Advertisement

A Linear Kernel for Co-Path/Cycle Packing

  • Zhi-Zhong Chen
  • Michael Fellows
  • Bin Fu
  • Haitao Jiang
  • Yang Liu
  • Lusheng Wang
  • Binhai Zhu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6124)

Abstract

Bounded-Degree Vertex Deletion is a fundamental problem in graph theory that has new applications in computational biology. In this paper, we address a special case of Bounded-Degree Vertex Deletion, the Co-Path/Cycle Packing problem, which asks to delete as few vertices as possible such that the graph of the remaining (residual) vertices is composed of disjoint paths and simple cycles. The problem falls into the well-known class of ’node-deletion problems with hereditary properties’, is hence NP-complete and unlikely to admit a polynomial time approximation algorithm with approximation factor smaller than 2. In the framework of parameterized complexity, we present a kernelization algorithm that produces a kernel with at most 37k vertices, improving on the super-linear kernel of Fellows et al.’s general theorem for Bounded-Degree Vertex Deletion. Using this kernel,and the method of bounded search trees, we devise an FPT algorithm that runs in time O *(3.24 k ). On the negative side, we show that the problem is APX-hard and unlikely to have a kernel smaller than 2k by a reduction from Vertex Cover.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abu-Khzam, F.N., Fellows, M.R., Langston, M.A., Suters, W.H.: Crown structures for vertex cover kernelization. Theory Comput. Syst. 41(3), 411–430 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chen, J., Kanj, I.A., Jia, W.: Vertex cover: Further observations and further improvements. J. Algorithms 41(2), 280–301 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chauve, C., Tannier, E.: A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genome. PLoS Comput. Biol. 4, e1000234 (2008)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Fujito, T.: Approximating node-deletion problems for matroidal properties. J. Algorithms 31, 211–227 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fellows, M., Guo, J., Moser, H., Niedermeier, R.: A generalization of Nemhausser and Trotter’s local optimization theorem. In: Proc. STACS 2009, pp. 409–420 (2009)Google Scholar
  7. 7.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)Google Scholar
  8. 8.
    Fernau, H., Raible, D.: Search trees: an essay. In: Proc. TAMC 2009, pp. 59–70 (2009)Google Scholar
  9. 9.
    Jiang, H., Chauve, C., Zhu, B.: Breakpoint distance and PQ-trees. In: Javed, A. (ed.) CPM 2010. LNCS, vol. 6129, pp. 112–124. Springer, Heidelberg (2010)Google Scholar
  10. 10.
    Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε. J. Comput. System Sci. 74, 335–349 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lewis, J., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. System Sci. 20, 425–440 (1980)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford University Press, Oxford (2006)zbMATHCrossRefGoogle Scholar
  13. 13.
    Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving problems under different genomic distances. BMC Bioinformatics 10, 120 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zhi-Zhong Chen
    • 1
  • Michael Fellows
    • 2
  • Bin Fu
    • 3
  • Haitao Jiang
    • 5
  • Yang Liu
    • 3
  • Lusheng Wang
    • 4
  • Binhai Zhu
    • 5
  1. 1.Department of Mathematical SciencesTokyo Denki University, HatoyamaSaitamaJapan
  2. 2.The University of New CastleCallaghanAustralia
  3. 3.Department of Computer ScienceUniversity of Texas-AmericanEdinburgUSA
  4. 4.Department of Computer ScienceCity University of Hong Kong, KowloonHong Kong
  5. 5.Department of Computer ScienceMontana State UniversityBozemanUSA

Personalised recommendations