Advertisement

Comparison of Two Algorithms for Computing Page Importance

  • Yuting Liu
  • Zhi-Ming Ma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6124)

Abstract

In this paper we discuss the relation and the difference between two algorithms BrowseRank and PageRank. We analyze their stationary distributions by the ergodic theory of Markov processes. We compare in detail the link graph used in PageRank and the user browsing graph used in BrowseRank. Along with the comparison, the importance of the metadata contained in the user browsing graph is explored.

Keywords

PageRank BrowseRank Continuous-time Makrov process Stationary distribution Ergodic theorem link graph user browsing graph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)CrossRefGoogle Scholar
  2. 2.
    Deng, Y., Liang, Z.: Stochastic Point Processes and Their Applications. Science Press, Beijing (1998) (in Chinese)Google Scholar
  3. 3.
    Golub, G.H., Loan, C.F.V.: Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  4. 4.
    Gyöngyi, Z., Garcia-Molina, H.: Web spam taxonomy. Technical Report TR 2004-25, Stanford University (2004)Google Scholar
  5. 5.
    Gyöngyi, Z., Garcia-Molina, H., Pedersen, J.: Combating web spam with trustrank. In: VLDB 2004: Proceedings of the Thirtieth International Conference on Very Large Data Bases, pp. 576–587, VLDB Endowment (2004)Google Scholar
  6. 6.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. In: SODA 1998, Philadelphia, PA, USA, pp. 668–677 (1998)Google Scholar
  7. 7.
    Langville, A.N., Meyer, C.D.: Deeper inside pagerank. Internet Mathematics 1(3), 335–400 (2004)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Liu, Y., Gao, B., Liu, T.-Y., Zhang, Y., Ma, Z., He, S., Li, H.: BrowseRank: letting web users vote for page importance. In: SIGIR 2008: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 451–458. ACM, New York (2008)CrossRefGoogle Scholar
  9. 9.
    Liu, Y., Liu, T.-Y., Gao, B., Ma, Z., Li, H.: A framework to compute page importance based on user behaviors. Information Retrieval 13(1), 22–45 (2010)CrossRefGoogle Scholar
  10. 10.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab, Previous number = SIDL-WP-1999-0120 (November 1999)Google Scholar
  11. 11.
    Qian, M.P., Gong, G.L.: Stochastic Process. Second version. Peking University Press (1997) (in Chinese)Google Scholar
  12. 12.
    Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton (1994)zbMATHGoogle Scholar
  13. 13.
    Stroock, D.W.: An Introduction to Markov Processes, Graduate Texts in Mathematics. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Wang, Z.K., Yang, X.Q.: Birth and Death Processes and Markov Chains. Springer, New York (1992)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yuting Liu
    • 1
  • Zhi-Ming Ma
    • 2
  1. 1.School of ScienceBeijing Jiaotong UniversityBeijingChina
  2. 2.CASAcademy of Mathematics and Systems ScienceBeijingChina

Personalised recommendations