Advertisement

Clustering Analysis for Vasculitic Diseases

  • Pınar Yıldırım
  • Çınar Çeken
  • Kağan Çeken
  • Mehmet R. Tolun
Part of the Communications in Computer and Information Science book series (CCIS, volume 88)

Abstract

We introduce knowledge discovery for vasculitic diseases in this paper. Vasculitic diseases affect some organs and tissues and diagnosing can be quite difficult. Biomedical literature can contain hidden and useful knowledge for biomedical research and we develop a study based on co-occurrence analysis by using the articles in MEDLINE which is a widely used database.The mostly seen vasculitic diseases are selected to explore hidden patterns. We select PolySearch system as a web based biomedical text mining tool to find organs and tissues in the articles and create two separate datasets with their frequencies for each disease. After forming these datasets, we apply hierarchical clustering analysis to find similarities between the diseases. Clustering analysis reveals some similarities between diseases. We think that the results of clustered diseases positively affect on the medical research of vasculitic diseases especially during the diagnosis and certain similarities can provide different views to medical specialists.

Keywords

Biomedical text mining data mining clustering analysis vasculitic diseases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Mubaid, H., Singh, R.K.: A new text mining approach for finding protein-to-protein associations. American Journal of Biochemistry and Biotechnology 1(3), 145–152 (2005)CrossRefGoogle Scholar
  2. 2.
    Solka, J.L.: Text Data Mining: Theory and Methods. Statistics Surveys 2, 94–112 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Vasculitis Foundation Canada, http://www.vasculitis.ca/
  4. 4.
  5. 5.
    Uramoto, N., Matsuzawa, H., Nagano, T., Murakami, A., Takeuchi, H., Takeda, K.: A text-mining system for knowledge discovery from biomedical documents. IBM Systems Journal 43(3), 516–533 (2004)CrossRefGoogle Scholar
  6. 6.
    Zhou, W., Smalheiser, N.R., Yu, C.: A tutorial on information retrieval: basic terms and concepts. Journal of Biomedical Discovery and Collaboration 1(2) (2006)Google Scholar
  7. 7.
    United States National Library of Medicine (NLM), http://www.nlm.nih.gov/databases/databases_medline.html
  8. 8.
    Cheng, D., Knox, C., Young, N., Stothard, P.: PolySearch: a web-based text mining system for extracting relationships between human diseases, genes, mutations, drugs and metabolites. Nucleic Acids Research 36, 399–405 (2008)CrossRefGoogle Scholar
  9. 9.
    Perez-Iratxeta, C., Pérez, A.J., Bork, P., Andrade, M.A.: Update on XplorMed: a web server for exploring scientific literature. Nucleic Acids Research 31(13), 3866–3868 (2003)CrossRefGoogle Scholar
  10. 10.
    Lin, S.M., McConnell, P., Johnson, K.F., Shoemaker, J.: MedlineR: an open source library in R for Medline literature data mining. Bioinformatics 18(20), 3659–3661 (2004)CrossRefGoogle Scholar
  11. 11.
    Maier, H., Döhr, S., Grote, K., O’Keeffe, S.: LitMiner and WikiGene: identifying problem-related key players of gene regulation using publication abstracts. Nucleic Acids Research 33, 779–782 (2005)CrossRefGoogle Scholar
  12. 12.
    Jelier, R., Schuemie, M.J., Veldhoven, A., Dorssers, L.C., Jenster, G., Kors, G.J.A.: Anni 2.0: a multipurpose text-mining tool for the life sciences. Genome Biology 9(6) (2008)Google Scholar
  13. 13.
    Tsuruoka, Y., Tsujii, J., Ananiadou, S.: FACTA: a text search engine for finding associated biomedical concepts. Bioinformatics Applications Note 24(21), 2559–2560 (2008)Google Scholar
  14. 14.
    Krallinger, M., Leither, F., Valencia, A.: Analysis of Biological Processes and Diseases Using Text Mining Approaches. Bioinformatics Methods in Clinical Research Series: Methods in Molecular Biology 593, 341–382 (2009)CrossRefGoogle Scholar
  15. 15.
    Holland, S.M.: Cluster Analysis. Depatrment of Geology, University of Georgia, Athens, GA 30602-2501 (2006)Google Scholar
  16. 16.
    Beckstead, J.W.: Using Hierarchical Cluster Analysis in Nursing Research. Western Journal of Nursing Research 24(307), 307–319 (2002)CrossRefGoogle Scholar
  17. 17.
    Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison Wesley, Reading (2006)Google Scholar
  18. 18.
    Open Source Clustering Software, overview, http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/
  19. 19.
    Astikainen, K., Kaven, R.: Statistical Analysis of Array Data:-Dimensionality Reduction, Clustering. Research Seminar on Data Analysis for BioinformaticsGoogle Scholar
  20. 20.
    Sato, E.I., Coelho Andrade, L.E.: Systemic vasculitis: a difficult diagnosis. Sao Paulo Med. J. 115(3) (1997)Google Scholar
  21. 21.
    Saleh, A.: Classification and diagnostic criteria in systemic vasculitis. Best Practice&Research Clinical Rheumatology 19(2), 209–221 (2005)CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Cohen, A.M., Hersh, W.R.: A survey of current work in biomedical text mining. Briefings in Bioinformatics 6(1), 57–71 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pınar Yıldırım
    • 1
  • Çınar Çeken
    • 2
  • Kağan Çeken
    • 3
  • Mehmet R. Tolun
    • 1
  1. 1.Faculty of Engineering and Architecture, Department of Computer EngineeringÇankaya UniversityAnkaraTurkey
  2. 2.Department of Physical Medicine and RehabilitationThe Ministry of Health of Turkey Antalya Education and Research HospitalAntalyaTurkey
  3. 3.Faculty of Medicine, Department of RadiologyAkdeniz UniversityArapsuyuTurkey

Personalised recommendations