A Comprehensive Study of Visual Cryptography

  • Jonathan Weir
  • WeiQi Yan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6010)


Visual cryptography (VC) is a powerful technique that combines the notions of perfect ciphers and secret sharing in cryptography with that of raster graphics. VC takes a binary image (the secret) and divides it into two or more pieces known as shares. When the shares are printed on transparencies and then superimposed, the secret can be recovered. No computer participation is required, thus demonstrating one of the distinguishing features of VC. VC is a unique technique in the sense that the encrypted message can be decrypted directly by the human visual system (HVS). In this survey, we will summarize the latest developments of visual cryptography since its inception in 1994, introduce the main research topics in this area and outline the current problems and possible solutions. Directions and trends for future VC work shall also be examined along with possible VC applications.


Secret Sharing Access Structure Secret Image Secret Sharing Scheme Black Pixel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Naor, M., Shamir, A.: Visual cryptography. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  3. 3.
    Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: Contrast optimal threshold visual cryptography schemes. SIAM Journal on Discrete Mathematics 16(2), 224–261 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Lau, D.L., Arce, G.R.: Modern Digital Halftoning. Marcel Dekker, New York (2000)Google Scholar
  5. 5.
    Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Extended schemes for visual cryptography. Theoretical Computer Science 250, 1–16 (1996)Google Scholar
  6. 6.
    Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Visual cryptography for general access structures. Information and Computation 129(2), 86–106 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Yang, C.N., Chen, T.S.: Extended visual secret sharing schemes with high-quality shadow images using gray sub pixels. In: Kamel, M.S., Campilho, A.C. (eds.) ICIAR 2005. LNCS, vol. 3656, pp. 1184–1191. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Ito, R., Kuwakado, H., Tanaka, H.: Image size invariant visual cryptography. IEICE Transactions E82-A(10), 2172–2177 (1999)Google Scholar
  9. 9.
    Tzeng, W.G., Hu, C.M.: A new approach for visual cryptography. Designs, Codes and Cryptography 27(3), 207–227 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Yang, C.N.: New visual secret sharing schemes using probabilistic method. Pattern Recognition Letters 25(4), 481–494 (2004)CrossRefGoogle Scholar
  11. 11.
    Yang, C.N., Chen, T.S.: New size-reduced visual secret sharing schemes with half reduction of shadow size. IEICE Transactions 89-A(2), 620–625 (2006)Google Scholar
  12. 12.
    Yang, C.N., Chen, T.S.: Visual secret sharing scheme: Improving the contrast of a recovered image via different pixel expansions. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2006. LNCS, vol. 4141, pp. 468–479. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Yang, C.N., Chen, T.S.: Aspect ratio invariant visual secret sharing schemes with minimum pixel expansion. Pattern Recognition Letters 26(2), 193–206 (2005)CrossRefGoogle Scholar
  14. 14.
    Yang, C.N., Chen, T.S.: Size-adjustable visual secret sharing schemes. IEICE Transactions 88-A(9), 2471–2474 (2005)Google Scholar
  15. 15.
    Yang, C.N., Chen, T.S.: Reduce shadow size in aspect ratio invariant visual secret sharing schemes using a square block-wise operation. Pattern Recognition 39(7), 1300–1314 (2006)zbMATHCrossRefGoogle Scholar
  16. 16.
    Kim, C.H., Seong, S.M., Lee, J.A., Kim, L.S.: Winscale: an image-scaling algorithm using an area pixel model. IEEE Transactions on Circuits and Systems for Video Technology 13(6), 549–553 (2003)CrossRefGoogle Scholar
  17. 17.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley Longman Publishing Co., Inc., Boston (2001)Google Scholar
  18. 18.
    Hofmeister, T., Krause, M., Simon, H.U.: Contrast-optimal k out of n secret sharing schemes in visual cryptography. Theoretical Computer Science 240(2), 471–485 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Tuyls, P., Hollmann, H.D.L., van Lint, J.H., Tolhuizen, L.M.G.M.: XOR-based visual cryptography schemes. Designs, Codes and Cryptography 37(1), 169–186 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Yang, C.N., Chen, T.S.: An image secret sharing scheme with the capability of previvewing the secret image. In: ICME 2007, pp. 1535–1538 (2007)Google Scholar
  21. 21.
    Thien, C.C., Lin, J.C.: Secret image sharing. Computers & Graphics 26, 765–770 (2002)CrossRefGoogle Scholar
  22. 22.
    Wang, R.Z., Su, C.H.: Secret image sharing with smaller shadow images. Pattern Recognition Letters 27(6), 551–555 (2006)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Horng, G., Chen, T., Tsai, D.S.: Cheating in visual cryptography. Des. Codes Cryptography 38(2), 219–236 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Naor, M., Pinkas, B.: Visual authentication and identification. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 322–336. Springer, Heidelberg (1997)Google Scholar
  25. 25.
    Yang, C., Laih, C.: Some new types of visual secret sharing schemes, vol. III, pp. 260–268 (December 1999)Google Scholar
  26. 26.
    Hu, C.M., Tzeng, W.G.: Cheating prevention in visual cryptography. IEEE Transactions on Image Processing 16(1), 36–45 (2007)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Biehl, I., Wetzel, S.: Traceable visual cryptography. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 61–71. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  28. 28.
    Kang, H.R.: Digital Color Halftoning. In: Society of Photo-Optical Instrumentation Engineers (SPIE), Bellingham, WA, USA (1999)Google Scholar
  29. 29.
    Campbell, A.: The Designer’s Lexicon. Chronicle Books, San Francisco (2000)Google Scholar
  30. 30.
    Zhou, Z., Arce, G.R., Crescenzo, G.D.: Halftone visual cryptography. IEEE Transactions on Image Processing 15(8), 2441–2453 (2006)CrossRefGoogle Scholar
  31. 31.
    Myodo, E., Sakazawa, S., Takishima, Y.: Visual cryptography based on void-and-cluster halftoning technique. In: ICIP, pp. 97–100 (2006)Google Scholar
  32. 32.
    Myodo, E., Takagi, K., Miyaji, S., Takishima, Y.: Halftone visual cryptography embedding a natural grayscale image based on error diffusion technique. In: ICME, pp. 2114–2117 (2007)Google Scholar
  33. 33.
    Wang, Z., Arce, G.R.: Halftone visual cryptography through error diffusion. In: ICIP, pp. 109–112 (2006)Google Scholar
  34. 34.
    Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Extended capabilities for visual cryptography. Theoretical Computer Science 250(1-2), 143–161 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Nakajima, M., Yamaguchi, Y.: Extended visual cryptography for natural images. In: WSCG, pp. 303–310 (2002)Google Scholar
  36. 36.
    Zhang, Y.: Space-filling curve ordered dither. Computers & Graphics 22(4), 559–563 (1998)CrossRefGoogle Scholar
  37. 37.
    Lin, C.C., Tsai, W.H.: Visual cryptography for gray-level images by dithering techniques. Pattern Recognition Letters 24(1-3), 349–358 (2003)CrossRefGoogle Scholar
  38. 38.
    Fu, M.S., Au, O.C.: A novel method to embed watermark in different halftone images: data hiding by conjugate error diffusion (dhced). In: ICME 2003, Washington, DC, USA, pp. 609–612. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  39. 39.
    Wu, C.W., Thompson, G.R., Stanich, M.J.: Digital watermarking and steganography via overlays of halftone images. In: SPIE, vol. 5561, pp. 152–163 (2004)Google Scholar
  40. 40.
    Ulichney, R.A.: Digital Halftoning. MIT Press, Cambridge (1987)Google Scholar
  41. 41.
    Chen, Y.F., Chan, Y.K., Huang, C.C., Tsai, M.H., Chu, Y.P.: A multiple-level visual secret-sharing scheme without image size expansion. Information Sciences 177(21), 4696–4710 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Wang, D., Zhang, L., Ma, N., Li, X.: Two secret sharing schemes based on boolean operations. Pattern Recognition 40(10), 2776–2785 (2007)zbMATHCrossRefGoogle Scholar
  43. 43.
    Cimato, S., De Santis, A., Ferrara, A.L., Masucci, B.: Ideal contrast visual cryptography schemes with reversing. Information Processing Letters 93(4), 199–206 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Duong, Q.V., Kurosawa, K.: Almost ideal contrast visual cryptography with reversing. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 353–365. Springer, Heidelberg (2004)Google Scholar
  45. 45.
    Yang, C.N., Wang, C.C., Chen, T.S.: Real perfect contrast visual secret sharing schemes with reversing. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 433–447. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  46. 46.
    Naor, M., Shamir, A.: Visual cryptography ii: Improving the contrast via the cover base. In: Lomas, M. (ed.) Security Protocols 1996. LNCS, vol. 1189, pp. 197–202. Springer, Heidelberg (1997)Google Scholar
  47. 47.
    Rijmen, V., Preneel, B.: Efficient color visual encryption for shared colors of benetton. In: EUCRYPTO 1996 (1996)Google Scholar
  48. 48.
    Verheul, E.R., Tilborg, H.C.A.V.: Constructions and properties of k out of n visual secret sharing schemes. Des. Codes Cryptography 11(2), 179–196 (1997)zbMATHCrossRefGoogle Scholar
  49. 49.
    Yang, C.N., Laih, C.S.: New colored visual secret sharing schemes. Designs, Codes and Cryptography 20(3), 325–336 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Cimato, S., De Prisco, R., De Santis, A.: Optimal colored threshold visual cryptography schemes. Designs, Codes and Cryptography 35(3), 311–335 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Hou, Y.C., Chang, C.Y., Tu, S.F.: Visual cryptography for color images based on halftone technology. Image, Acoustic, Speech and Signal Processing, Part 2 (2001)Google Scholar
  52. 52.
    Hou, Y.C.: Visual cryptography for color images. Pattern Recognition 36, 1619–1629 (2003)CrossRefGoogle Scholar
  53. 53.
    Leung, B.W., Ng, F.Y., Wong, D.S.: On the security of a visual cryptography scheme for color images. Pattern Recognition (August 2008)Google Scholar
  54. 54.
    Koga, H., Yamamoto, H.: Proposal of a lattice-based visual secret sharing scheme for color and grey-scale images. IEICE Transactions Fundamentals E81-A(6), 1262–1269 (1998)Google Scholar
  55. 55.
    Krishna Prakash, N., Govindaraju, S.: Visual secret sharing schemes for color images using halftoning. Proceedings of Computational Intelligence and Multimedia Applications 3, 174–178 (2007)Google Scholar
  56. 56.
    Lukac, R., Plataniotis, K.N.: Bit-level based secret sharing for image encryption. Pattern Recognition 38(5), 767–772 (2005)zbMATHCrossRefGoogle Scholar
  57. 57.
    Shyu, S.J.: Efficient visual secret sharing scheme for color images. Pattern Recognition 39(5), 866–880 (2006)zbMATHCrossRefGoogle Scholar
  58. 58.
    Blundo, C., De Bonis, A., De Santis, A.: Improved schemes for visual cryptography. Designs, Codes and Cryptography 24(3), 255–278 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Chang, C.C., Lin, C.C., Lin, C.H., Chen, Y.H.: A novel secret image sharing scheme in color images using small shadow images. Information Sciences 178(11), 2433–2447 (2008)CrossRefMathSciNetGoogle Scholar
  60. 60.
    Yang, C.N., Chen, T.S.: New size-reduced visual secret sharing schemes with half reduction of shadow size. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 19–28. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  61. 61.
    Yang, C.N., Chen, T.S.: Colored visual cryptography scheme based on additive color mixing. Pattern Recognition 41(10), 3114–3129 (2008)zbMATHCrossRefGoogle Scholar
  62. 62.
    Cimato, S., De Prisco, R., De Santis, A.: Colored visual cryptography without color darkening. Theoretical Computer Science 374(1-3), 261–276 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Jin, D., Yan, W.Q., Kankanhalli, M.S.: Progressive color visual cryptography. SPIE Journal of Electronic Imaging 14(3) (2005)Google Scholar
  64. 64.
    Fang, W.P.: Friendly progressive visual secret sharing. Pattern Recognition 41(4), 1410–1414 (2008)zbMATHCrossRefGoogle Scholar
  65. 65.
    Chen, S.K., Lin, J.C.: Fault-tolerant and progressive transmission of images. Pattern Recognition 38(12), 2466–2471 (2005)CrossRefGoogle Scholar
  66. 66.
    Fang, W.P., Lin, J.C.: Visual cryptography with extra ability of hiding confidential data. Journal of Electronic Imaging 15(2), 023020 (2006)CrossRefGoogle Scholar
  67. 67.
    Thien, C.C., Lin, J.C.: An image-sharing method with user-friendly shadow images. IEEE Transactions on Circuits and Systems for Video Technology 13(12), 1161–1169 (2003)CrossRefGoogle Scholar
  68. 68.
    Wu, C., Chen, L.: A study on visual cryptography. Master’s thesis, Institute of Computer and Information Science, National Chiao Tung University, Taiwan, R.O.C. (1998)Google Scholar
  69. 69.
    Katoh, T., Imai, H.: An extended construction method for visual secret sharing schemes. IEICE Transactions J79-A(8), 1344–1351 (1996)Google Scholar
  70. 70.
    Yang, C.N., Chen, T.S.: Extended visual secret sharing schemes: Improving the shadow image quality. IJPRAI 21(5), 879–898 (2007)Google Scholar
  71. 71.
    Wu, H.C., Chang, C.C.: Sharing visual multi-secrets using circle shares. Computer Standards & Interfaces 28, 123–135 (2005)CrossRefGoogle Scholar
  72. 72.
    Hsu, H.C., Chen, T.S., Lin, Y.H.: The ringed shadow image technology of visual cryptography by applying diverse rotating angles to hide the secret sharing. Networking, Sensing and Control 2, 996–1001 (2004)Google Scholar
  73. 73.
    Shyu, S.J., Huang, S.Y., Lee, Y.K., Wang, R.Z., Chen, K.: Sharing multiple secrets in visual cryptography. Pattern Recognition 40(12), 3633–3651 (2007)zbMATHCrossRefGoogle Scholar
  74. 74.
    Weir, J., Yan, W.Q.: Sharing multiple secrets using visual cryptography. In: IEEE ISCAS 2009, Taiwan (2009)Google Scholar
  75. 75.
    Feng, J.B., Wu, H.C., Tsai, C.S., Chang, Y.F., Chu, Y.P.: Visual secret sharing for multiple secrets. Pattern Recognition 41(12), 3572–3581 (2008)zbMATHCrossRefGoogle Scholar
  76. 76.
    Chen, S.K.: A visual cryptography based system for sharing multiple secret images. In: ISCGAV 2007: Proceedings of the 7th WSEAS International Conference on Signal Processing, Computational Geometry & Artificial Vision, Stevens Point, Wisconsin, USA, World Scientific and Engineering Academy and Society (WSEAS), pp. 117–122 (2007)Google Scholar
  77. 77.
    Gnanaguruparan, M., Kak, S.: Recursive hiding of secrets in visual cryptography. Cryptologia 26(1), 68–76 (2002)CrossRefGoogle Scholar
  78. 78.
    Crescenzo, G.D.: Sharing one secret vs. sharing many secrets. Theoretical Computer Science 295(1-3), 123–140 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  79. 79.
    Weir, J., Yan, W., Crookes, D.: Secure mask for color image hidding. In: Communications and Networking in China, ChinaCom 2008, August 2008, pp. 1304–1307 (2008)Google Scholar
  80. 80.
    Memon, N., Wong, P.W.: Protecting digital media content. Communications of the ACM 41(7), 35–43 (1998)CrossRefGoogle Scholar
  81. 81.
    van Schyndel, R.G., Tirkel, A.Z., Osborne, C.F.: A digital watermark. In: ICIP(2), pp. 86–90 (1994)Google Scholar
  82. 82.
    Braudaway, G.W., Magerlein, K.A., Mintzer, F.: Protecting publicly available images with a visible image watermark. In: van Renesse, R.L. (ed.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, March 1996. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 2659, pp. 126–133 (1996)Google Scholar
  83. 83.
    Wong, P.W.: A watermark for image integrity and ownership verification. In: PICS, IS&T - The Society for Imaging Science and Technology, pp. 374–379 (1998)Google Scholar
  84. 84.
    Luo, H., Pan, J.S., Lu, Z.M.: Hiding multiple watermarks in transparencies of visual cryptography. Intelligent Information Hiding and Multimedia Signal Processing 1, 303–306 (2007)CrossRefGoogle Scholar
  85. 85.
    Hwang, R.J.: A digital image copyright protection scheme based on visual cryptography. Tamkang Journal of Science and Engineering 3(2), 97–106 (2000)Google Scholar
  86. 86.
    Hassan, M.A., Khalili, M.A.: Self watermarking based on visual cryptography. Proceedings of World Academy of Science, Engineering and Technology 8, 159–162 (2005)Google Scholar
  87. 87.
    Sleit, A., Abusitta, A.: A visual cryptography based watermark technology for individual and group images. Systemics, Cybernetics And Informatics 5(2), 24–32Google Scholar
  88. 88.
    Chuang, S.C., Huang, C.H., Wu, J.L.: Unseen visible watermarking. In: ICIP(3), pp. 261–264. IEEE, Los Alamitos (2007)Google Scholar
  89. 89.
    Hou, Y.C., Chen, P.M.: An asymmetric watermarking scheme based on visual cryptography. In: WCCC-ICSP 5th International Conference on Signal Processing Proceedings, vol. 2, pp. 992–995 (2000)Google Scholar
  90. 90.
    Hersch, R.D., Chosson, S.: Band moiré images. In: ACM SIGGRAPH 2004, pp. 239–247. ACM, New York (2004)CrossRefGoogle Scholar
  91. 91.
    Knotts, M.E., Hemphill, R.G.: Selected papers on optical moiré and applications. Optics & Photonics News, 53–55 (August 1996)Google Scholar
  92. 92.
    Kafri, O., Glatt, I.: The physics of Moire metrology. Wiley, New York (1990)Google Scholar
  93. 93.
    Indebetouw, G., Czarnek, R.: Selected papers on optical moiré and applications. SPIE Milestones Series, vol. MS64 (1992)Google Scholar
  94. 94.
    Amidror, I.: The Theory of the Moiré Phenomenon. Kluwer, Dordrecht (2000)zbMATHGoogle Scholar
  95. 95.
    Hutley, M., Stevens, R.: Optical inspection of arrays and periodic structures using moire magnification. In: Searching for Information: Artificial Intelligence and Information Retrieval Approaches (Ref. No. 1999/199), IEE Two-day Seminar, pp. 8/1–8/5 (1999)Google Scholar
  96. 96.
    Kamal, H., Völkel, R., Alda, J.: Properties of moir[e-acute] magnifiers. Optical Engineering 37(11), 3007–3014 (1998)CrossRefGoogle Scholar
  97. 97.
    Gabrielyan, E.: Shape moiré patterns (March 2007),
  98. 98.
    Desmedt, Y., Le, T.V.: Moiré cryptography. In: ACM Conference on Computer and Communications Security, pp. 116–124 (2000)Google Scholar
  99. 99.
    Liu, S., Zhang, X., Lai, H.: Artistic effect and application of moireé patterns in security holograms. Applied Optics 34(22), 4700–4702 (1995)CrossRefGoogle Scholar
  100. 100.
    Praun, E., Hoppe, H., Webb, M., Finkelstein, A.: Real-time hatching. In: ACM SIGGRAPH 2001, pp. 579–584. ACM, New York (2001)Google Scholar
  101. 101.
    Yan, W.Q., Jin, D., Kankanhalli, M.S.: Visual cryptography for print and scan applications. In: Proceedings of International Symposium on Circuits and Systems, Vancouver, Canada, May 2004, pp. 572–575 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jonathan Weir
    • 1
  • WeiQi Yan
    • 1
  1. 1.Queen’s University BelfastBelfastUK

Personalised recommendations