Advertisement

Collusion-Resistant Fingerprinting Systems: Review and Recent Results

  • Byung-Ho Cha
  • C. -C. Jay Kuo
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6010)

Abstract

This paper provides a review of previous work and recent results on the design and analysis of collusion-resistant fingerprinting systems. Collusion attacks examined in previous work are with constant weights for all colluders. Collusion attacks on continuous media (such as audio and video) with time-varying weights are simple to implement, but have never been treated by other researchers. In recent years, we have proposed a new fingerprinting system called MC-CDMA-based fingerprinting since it is inspired by the multi-carrier code division multi-access (MC-CDMA) communication technique. The time-varying collusion attack can be conveniently analyzed by drawing an analogy to the multi-access interference (MAI) problem in a wireless communication system with a time-varying channel response. As a result, many powerful tools from wireless communications can be borrowed to design a collusion-resistant fingerprinting system. They include codeword design, shifted spreading, pilot-based channel estimation, receiver design, etc. Furthermore, we present results on capacity, throughput, and distortion of a colluded media file. Finally, we will mention some open research problems.

Keywords

multi-access interference time-varying collusion attacks human perceptual system multimedia distortion advanced detection collusion-resistant fingerprinting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stone, H.S.: Analysis of attacks on image watermarks with randomized coefficients. Technical Report 96-045, NEC Res. Inst. Tech. Princeton, NJ (1996)Google Scholar
  2. 2.
    Yacobi, Y.: Improved Boneh-Shaw content fingerprinting. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, p. 378. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Liu, K.J.R., Trappe, W., Wang, Z.J., Wu, M., Zhao, H.: Multimedia fingerprinting forensics for traitor tracing. In: Hindawi, EURASIP on Signal Processing and Communications, New York, NY (2005)Google Scholar
  4. 4.
    Blackley, G.R., Meadows, C., Purdy, G.B.: Fingerprinting long forgiving messages. In: Proc. of Cryptography, Berlin, Heidelberg, pp. 180–189 (1985)Google Scholar
  5. 5.
    Cha, B.H., Kuo, C.C.J.: Design of collusion-free codes based on MAI-free principle. In: Proc. IEEE Int’l. Conf. Intelligent Information Hiding and Multimedia Signal Processing, Pasadena, CA, December 2006, pp. 639–642 (2006)Google Scholar
  6. 6.
    Cha, B.H., Kuo, C.C.J.: Design of collusion-free hiding codes using MAI-free principle. In: Proc. IEEE Int’l. Conf. Acoustics, Speech, and Signal Processing, Honolulu, HI, April 2007, pp. 145–148 (2007)Google Scholar
  7. 7.
    Cha, B.H., Kuo, C.C.J.: Design of multiuser collusion-free hiding codes with delayed embedding. In: Proc. IEEE Int’l. Conf. Intelligent Information Hiding and Multimedia Signal Processing, Kaohsiung, Taiwan, November 2007, pp. 379–382 (2007)Google Scholar
  8. 8.
    Cha, B.H., Kuo, C.C.J.: Design and analysis of high-capacity anti-collusion hiding codes. Journal of Circuits, Systems, and Signal Processing 27, 195–211 (2008)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Cha, B.H., Kuo, C.C.J.: Advanced colluder detection techniques for OSIFT-based hiding codes. In: Proc. IEEE Int’l. Sym. Circuits and Systems, Seattle, Washington, May 2008, pp. 2961–2964 (2008)Google Scholar
  10. 10.
    Cha, B.H., Kuo, C.C.J.: Analysis of time-varying collusion attacks in fingerprinting systems: capacity and throughput. In: Proc. IEEE Int’l. Sym. Circuits and Systems, Taipei, Taiwan, May 2009, pp. 493–496 (2009)Google Scholar
  11. 11.
    Cha, B.H., Kuo, C.C.J.: Robust MC-CDMA-based fingerprinting against time-varying collusion attacks. IEEE Transactions on Information Forensics and Security 4, 302–317 (2009)CrossRefGoogle Scholar
  12. 12.
    Kiyavash, N., Moulin, P.: A framework for optimizing nonlinear collusion attack on fingerprinting systems. In: Proc. Conf. Infromation Sciences and Systems, Princeton, NJ (2006)Google Scholar
  13. 13.
    Kiyavash, N., Moulin, P.: On optimal collusion strategies for fingerprinting. In: Proc. IEEE Int’l. Conf. Acoustics, Speech, and Signal Processing, Toulouse, France, May 2006, pp. 405–408 (2006)Google Scholar
  14. 14.
    Zhao, H.V., Liu, K.J.R.: Tritor-within-traitor behavior forensics: strategy and risk minimization. IEEE Transactions on Information Forensics and Security 1, 440–456 (2006)CrossRefGoogle Scholar
  15. 15.
    Zhao, H.V., Wu, M., Wang, Z.J., Liu, K.J.R.: Forensic analysis of nonlinear collusion attacks for multimedia fingerpinting. IEEE Transactions on Image Processing 14, 646–661 (2005)CrossRefGoogle Scholar
  16. 16.
    Wang, Z.J., Wu, M., Zhao, H.V., Liu, K.J.R.: Anti-collusion forensics of multimedia fingerprinting using orthogonal mudulation. IEEE Transactions on Image Processing 14, 804–821 (2005)CrossRefGoogle Scholar
  17. 17.
    Staddon, J.N., Stinson, D.R., Wei, R.: Combinatorial properties of frameproof and traceability codes. IEEE Transactions on Information Theory 47, 1042–1049 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Wagner, N.R.: Fingerprinting. In: Proc. Symp. Security Privacy, Oakland, CA, April 1983, pp. 18–22 (1983)Google Scholar
  19. 19.
    Hollmann, H.D.L., van Lint, J.H., Linnartz, J.P., Tolhuizen, L.M.G.M.: On codes with the identifiable parent property. Journal of Combinatorial Theory 82, 121–133 (1998)zbMATHCrossRefGoogle Scholar
  20. 20.
    Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Transactions on Information Theory 44, 1897–1905 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing traitors. IEEE Transactions on Information Theory 46, 893–910 (2000)zbMATHCrossRefGoogle Scholar
  22. 22.
    Tardos, G.: Optimal probabilistic fingerprint coding. In: Proc. ACM symp. Theory Comput., pp. 116–125 (2003)Google Scholar
  23. 23.
    Wu, M., Trappe, W., Wang, Z.J., Liu, K.J.R.: Collusion resistant fingerprinting for multimedia. IEEE Signal Processing Magazine 21, 15–27 (2004)Google Scholar
  24. 24.
    Cox, I.J., Kilian, J., Leighton, F.T., Shamoon, T.: Secure spread spectrum watermarking for multimedia. IEEE Transactions on Image Processing 6, 1673–1687 (1997)CrossRefGoogle Scholar
  25. 25.
    Li, Z., Trappe, W.: Collusion-resistant fingerprints from WBE sequence sets. In: Proc. IEEE Int’l. Conf. Communications, Seoul, Korea, May 2005, pp. 1336–1340 (2005)Google Scholar
  26. 26.
    Trappe, W., Wu, M., Wang, Z.J., Liu, K.J.R.: Anti-collusion fingerprinting for multimedia. IEEE Transactions on Signal Processing 51, 1069–1087 (2003)CrossRefMathSciNetGoogle Scholar
  27. 27.
    He, S., Wu, M.: Joint coding and embedding techniques for multimedia fingerprinting. IEEE Transactions on Information Forensics and Security 1, 231–247 (2006)CrossRefGoogle Scholar
  28. 28.
    Tse, D.N.C., Viswanath, P.: Fundamentals of wireless communication. Cambridge University Press, Cambridge (2005)zbMATHGoogle Scholar
  29. 29.
    Tsai, S.H., Lin, Y.P., Kuo, C.C.J.: A precoded multiuser OFDM (PMU-OFDM) transceiver for time asynchronous systems. In: Proc. IEEE GLOBECOM, St. Louis, MO, November 2005, pp. 2214–2218 (2005)Google Scholar
  30. 30.
    Tsai, S.H., Lin, Y.P., Kuo, C.C.J.: MAI-free MC-CDMA based on Hadamard-Walsh codes. IEEE Transactions on Signal Processing 54, 3166–3179 (2006)CrossRefGoogle Scholar
  31. 31.
    Giannakis, G.B., Serpedin, E.: Linear multichannel blind equalizers of nonlinear FIR volterra channels. IEEE Transactions on Signal Processing 45, 67–81 (1997)CrossRefGoogle Scholar
  32. 32.
    Tugnait, J.K., Tong, L., Ding, Z.: Single-user channel estimation and equalization. IEEE Signal Processing Magazine 17, 16–28 (2000)CrossRefGoogle Scholar
  33. 33.
    Verdu, S.: Multiuser detection. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  34. 34.
    Hanzo, L., Munster, M., Choi, B.J., Keller, T.: OFDM and MC-CDMA for broadband multi-user communications, WLANs and broadcasting. John Wiley & Sons, West Sussex (2004)Google Scholar
  35. 35.
    Jayant, N., Johnston, J., Safranek, R.: Signal compression based on models of human perception. Proceedings of the IEEE 81, 1385–1422 (1993)CrossRefGoogle Scholar
  36. 36.
    Watson, A.B.: DCT quantization matrices visually optimized for individual images. In: Proc. SPIE, Conf. Human Vision, Visual Processing, and Digital Display, San Jose, CA, USA, February 1993, pp. 202–216 (1993)Google Scholar
  37. 37.
    Watson, A.B., Yang, G.Y., Solomon, J.A., Villasenor, J.: Visibility of wavelet qunatization noise. IEEE Transactions on Image Processing 6, 1164–1175 (1997)CrossRefGoogle Scholar
  38. 38.
    Podilchuk, C.I., Zeng, W.: Image-adaptive watermarking using visual models. IEEE Journal on Selected Areas in Communications 16, 525–539 (1998)CrossRefGoogle Scholar
  39. 39.
    Kirovski, D., Malvar, H.S.: Spread-spectrum watermarking of audio signals. IEEE Transactions on Signal Processing 51, 1020–1033 (2003)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Liu, Y.W., Smith, J.O.: Audio watermarking through deterministic plus stochastic signal decomposition. EURASIP Journal on Information Security 2007, 1–12 (2007)Google Scholar
  41. 41.
    Allen, J.B., Rabiner, L.R.: A unified approach to short-time Fourier analaysis and synthesis. Proceedings of the IEEE 65, 1558–1564 (1977)CrossRefGoogle Scholar
  42. 42.
    Princen, J.P., Bradley, A.B.: Analysis/synthesis filter bank design based on time domain aliasing cancellation. IEEE Transactions on Acoustics, Speech, and Signal Processing 86, 1153–1161 (1986)CrossRefGoogle Scholar
  43. 43.
    Tse, D.N.C., Hanly, S.V.: Linear multiuser receivers: effective interference, effective bandwidth and user capacity. IEEE Transactions on Information Theory 45, 641–657 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Proakis, J.G.: Digital Communications. McGraw-Hill, New York (1995)Google Scholar
  45. 45.
    Sklar, B.: Rayleigh fading channels in mobile digital communications systems part I: characterization. IEEE Communications Magazine, 90–100 (July 1997)Google Scholar
  46. 46.
    Sklar, B.: Rayleigh fading channels in mobile digital communications systems part II: mitigation. IEEE Communications Magazine, 102–109 (July 1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Byung-Ho Cha
    • 1
  • C. -C. Jay Kuo
    • 1
  1. 1.Ming-Hsieh Department of Electrical EngineeringUniversity of Southern CaliforniaLos Angeles

Personalised recommendations