Advertisement

Color Based Tracing in Real-Life Surveillance Data

  • Michael J. Metternich
  • Marcel Worring
  • Arnold W. M. Smeulders
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6010)

Abstract

For post incident investigation a complete reconstruction of an event is needed based on surveillance footage of the crime scene and surrounding areas. Reconstruction of the whereabouts of the people in the incident requires the ability to follow persons within a camera’s field-of-view (tracking) and between different cameras (tracing). In constrained situations a combination of shape and color information is shown to be best at discriminating between persons. In this paper we focus on person tracing between uncalibrated cameras with non-overlapping field-of-view. In these situations standard image matching techniques perform badly due to large, uncontrolled variations in viewpoint, light source, background and shading. We show that in these unconstrained real-life situations, tracing results are very dependent on the appearance of the subject.

Keywords

Real-life Surveillance Tracing 

References

  1. 1.
    Alahi, A., Vandergheynst, P., Bierlaire, M., Kunt, M.: Cascade of descriptors to detect and track objects across any network of cameras. Preprint submitted to Computer Vision and Image Understanding (2009)Google Scholar
  2. 2.
    Black, J., Ellis, T.: Multi camera image tracking. Image Vision Comput. 24(11), 1256–1267 (2006)CrossRefGoogle Scholar
  3. 3.
    Buchsbaum, G.: A spatial processor model for object colour perception. Journal of the Franklin Institute 310(1), 337–350 (1980)CrossRefGoogle Scholar
  4. 4.
    Calderara, S., Prati, A., Cucchiara, R.: Hecol: Homography and epipolar-based consistent labeling for outdoor park surveillance. Computer Vision and Image Understanding 111(1), 21–42 (2008)CrossRefGoogle Scholar
  5. 5.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR 2005: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 886–893 (2005)Google Scholar
  6. 6.
    Datcu, D., Yang, Z., Rothkrantz, L.: Multimodal workbench for automatic surveillance applications. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 0, pp. 1–2 (2007)Google Scholar
  7. 7.
    Dunstone, T., Yager, N.: Biometric System and Data Analysis: Design, Evaluation, and Data Mining. Springer Publishing Company, Incorporated, Heidelberg (2008)Google Scholar
  8. 8.
    Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 264–271 (2003)Google Scholar
  9. 9.
    Finlayson, G., Hordley, S.: Gamut constrained illumination estimation. International Journal of Computer Vision 67(1), 93–109 (2006)CrossRefGoogle Scholar
  10. 10.
    Forstner, W., Moonen, B.: A metric for covariance matrices. Qua vadis geodesia 1, 113–128 (1999)Google Scholar
  11. 11.
    Forsyth, D.: A novel algorithm for color constancy. International Journal of Computer Vision 5(1), 5–36 (1990)CrossRefGoogle Scholar
  12. 12.
    Gray, D., Brennan, S., Tao, H.: Evaluating appearance models for recognition, reacquisition, and tracking. In: Performance Evaluation of Tracking and Surveillance, PETS (2007)Google Scholar
  13. 13.
    Jurie, F., Triggs, B.: Creating efficient codebooks for visual recognition. In: ICCV 2005: Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV 2005), Washington, DC, USA, vol. 1, pp. 604–610. IEEE Computer Society, Los Alamitos (2005)CrossRefGoogle Scholar
  14. 14.
    Kalman, R.: A new approach to linear filtering and prediction problems. Journal of Basic Engineering 82(1), 35–45 (1960)Google Scholar
  15. 15.
    Koppen, P., Worring, M.: Multi-target tracking in time-lapse video forensics. In: MiFor 2009: Proceedings of the First ACM workshop on Multimedia in forensics, pp. 61–66. ACM, New York (2009)CrossRefGoogle Scholar
  16. 16.
    Land, E., McCann, J.: Lightness and retinex theory. The Journal of the Optical Society of America A 61(1), 1–11 (1971)CrossRefGoogle Scholar
  17. 17.
    Leibe, B., Schiele, B.: Interleaved object categorization and segmentation. In: British Machine Vision Conference, pp. 759–768 (2003)Google Scholar
  18. 18.
    Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. Int. J. Comput. Vision 43(1), 29–44 (2001)zbMATHCrossRefGoogle Scholar
  19. 19.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 20, 91–110 (2003)Google Scholar
  20. 20.
    Nowak, E., Jurie, F.: Learning visual similarity measures for comparing never seen objects. Computer Vision and Pattern Recognition 1, 1–8 (2007)Google Scholar
  21. 21.
    Pham, T., Worring, M., Smeulders, A.: A multi-camera visual surveillance system for tracking of reoccurences of people. In: International Conference on Distributed Smart Cameras, vol. 1, pp. 164–169 (2007)Google Scholar
  22. 22.
    Piciarelli, C., Micheloni, C., Foresti, G.: Trajectory-based anomalous event detection 18(11), 1544–1554 (2008)Google Scholar
  23. 23.
    Rao, C., Ray, A., Sarkar, S., Yasar, M.: Review and comparative evaluation of symbolic dynamic filtering for detection of anomaly patterns 3(2), xx–yy (2009)Google Scholar
  24. 24.
    Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: IEEE International Conference on Computer Vision, vol. 2, p. 1470 (2003)Google Scholar
  25. 25.
    Tuzel, O., Porikli, F., Meer, P.: Region covariance: A fast descriptor for detection and classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 589–600. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluation of color descriptors for object and scene recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, Alaska, USA (2008)Google Scholar
  27. 27.
    van de Weijer, J., Gevers, T., Gijsenij, A.: Edge-based color constancy. IEEE Transactions on Image Processing 16(9), 2207–2214 (2007)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Vapnik, V.N.: The nature of statistical learning theory. Springer, New York (1995)zbMATHGoogle Scholar
  29. 29.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Surv. 38(4), 13 (2006)CrossRefGoogle Scholar
  30. 30.
    Zajdel, W., Krijnders, J.D., Andringa, T., Gavrila, D.M.: Cassandra: Audio-video sensor fusion for aggression detection. In: IEEE Int. Conf. on Advanced Video and Signal based Surveillance, AVSS (2007)Google Scholar
  31. 31.
    Zhou, Q., Aggarwal, J.K.: Object tracking in an outdoor environment using fusion of features and cameras. Image Vision Comput. 24(11), 1244–1255 (2006)CrossRefGoogle Scholar
  32. 32.
    Zivkovic, Z., der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters 27, 773–780 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michael J. Metternich
    • 1
  • Marcel Worring
    • 1
  • Arnold W. M. Smeulders
    • 1
  1. 1.ISLA-University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations