Skip to main content

Abstract

The genus Festuca L. is one of the largest in Gramineae and is, along with Poa L., the largest genus of tribe Poeae. Festuca L. and its closely allied genus Lolium L. have long fascinated agronomists, evolutionists, and plant breeders, and these genera are among the most widely studied of the non-cereal grasses. The genus Festuca contains two agriculturally important forage crops, hexaploid tall fescue and diploid meadow fescue. Other fescues of some importance are red fescue, F. rubra L., and sheep fescue, F. ovina L., as forage and turf. Festuca species are much better adapted to such abiotic stresses as heat, drought, and low temperature, but by contrast, they do not compare well in animal forage provision to Lolium species as Festuca species show poor establishment and comparatively lower quality characteristics. Festuca and Lolium species hybridize naturally and exhibit high frequencies of gene exchange in the hybrid condition. Intergeneric hybrids (Festulolium) between Festuca and Lolium species are being used to broaden the gene pool and to provide the plant breeder with options to combine high quality traits with broad adaptations to a range of environmental constraints. Festulolium varieties have promise as novel grasses with high forage and turf quality and resistance to environmental stress and thereby can improve grassland productivity, persistency, and benefit incomes as well as low maintenance turf. Conventional breeding programs of forage and turf grasses rely basically on observable phenotypes using the natural genetic variation found between and within varieties or ecotypes. Genetic improvement of forage and turf grasses by conventional breeding programs is very slow due to the obligate outcrossing and perennial nature of grasses. Advances in genomics and gene manipulation can complement and enhance conventional plant breeding programs. Sustainable system for production and maintenance of forage and turf will be the most important issue in the future. Some of Festuca species have strong abiotic tolerances such as against freezing, heat, and drought. We should evaluate many accessions of Festuca species in terms of the sustainability of the materials for breeding now.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexeev EB (1977) Systematics of Asian fescues (Festuca). I. Subgenera Drymanthele, Subulatae, Schedonorus, Leucopoa. Bjull Moskovsk Obšc Isp Prir, Otd Biol 82:95–102 (in Russian)

    Google Scholar 

  • Alexeev EB (1981) The new taxa of the genus Festuca (Poaceae) from Mexico and Central America. Bot Zhurn 66:1492–1501 (in Russian)

    Google Scholar 

  • Alexeev EB (1982) A new section and three new species of the genus Festuca (Poaceae) from Mexico and Central America. Bot Zhurn 67:1289–1292 (in Russian)

    Google Scholar 

  • Alexeev EB (1984) New taxa of the genus Festuca (Poaceae) from Colombia and Ecuador. Bot Zhurn 69:1543–1552 (in Russian)

    Google Scholar 

  • Alexeev EB (1988) Genus Festuca L. (Poaceae) in Japan, Korea and Taiwan. Novosti Sist Vysš Rast 25:5–27

    Google Scholar 

  • Alm V, Fang C, Busso CS, Devos KM, Vollan K, Grieg Z, Rognli OA (2003) A linkage map of meadow fescue (Festuca pratensis Huds.) and comparative mapping with other Poaceae species. Theor Appl Genet 108:25–40

    Article  CAS  PubMed  Google Scholar 

  • Armstead IP, Harper JA, Turner LB, Skøt L, King IP, Humphreys MO, Morgan WG, Thomas HM, Roderick HW (2006) Introgression of crown rust (Puccinia coronata) resistance from meadow fescue (Festuca pratensis) into Italian ryegrass (Lolium multiflorum): genetic mapping and identification of associated molecular markers. Plant Pathol 55:62–67

    Article  CAS  Google Scholar 

  • Barnes RF (1990) Importance and problems of tall fescue. In: Kasperbauer MJ (ed) Biotechnology in tall fescue improvement. CRC, Boca Raton, FL, pp 1–12

    Google Scholar 

  • Beard JB (1973) Turfgrass: science and culture. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Beard JB (1998) Traditional fine-leaf fescue putting greens. Turfax 6:3

    Google Scholar 

  • Borrill M, Tyler B, Lloyd-Jones M (1971) Studies in Festuca. I. A charomosome atlas of bovinae and scariosae. Cytologia 36:1–14

    Google Scholar 

  • Bowman JG, Thomas H (1976) Studies in Festuca. 8. Cytological relationships between F. glaucescens (2n=28), F. mairei (2n=28) and F. scoriosa (2n=14). Z Pflanzenzuecht 76:250–257

    Google Scholar 

  • Brown AHD (1992) Human impact on plant gene pools and sampling for their conservation. Oikos 63:109–118

    Article  Google Scholar 

  • Buckner RC, Burrus PB II, Bush LP (1977) Registration of Kenhy tall fescue. Crop Sci 17:672–673

    Article  Google Scholar 

  • Buckner RC, Bush LP, Burrus PB II (1979) Succulence as a selection criterion for improved forage quality in LoliumFestuca hybrids. Crop Sci 19:93–96

    Article  Google Scholar 

  • Buckner RC, Boling JA, Burrus PB II, Bush LP, Hemken RA (1983) Registration of Johnstone tall fescue. Crop Sci 23:399–400

    Article  Google Scholar 

  • Cao M, Sleper DA (2001) Use of genome-specific repetitive DNA sequences to monitor chromatin introgression from Festuca mairei into Lolium perenne. Theor Appl Genet 103:248–253

    Article  CAS  Google Scholar 

  • Casler MD, van Santen E (2000) Patterns of variation in a collection of meadow fescue accessions. Crop Sci 40:248–255

    Article  Google Scholar 

  • Casler MD, Undersander DJ, Fredericks C, Combs DK, Reed JD (1998) An on-farm test of perennial forage grass varieties under management intensive grazing. J Prod Agric 11:92–99

    Google Scholar 

  • Catalán P, Torrecilla P, López Rodríguez JA, Olmstead RG (2004) Phylogeny of the festucoid grasses of subtribe Loliinae and allies (Poeae, Pooideae) inferred from ITS and trnL-F sequences. Mol Phylogenet Evol 31:517–541

    Article  PubMed  CAS  Google Scholar 

  • CBD (2005) Handbook of the convention on biological diversity (CBD), 3rd edn. http://www.cbd.int/handbook/

  • Chandrasekharan P, Thomas H (1971a) Studies in Festuca. V. Cytogenetic relationships between species of Bovinae and Scariosae. Z Pflanzenzucht 65:345–354

    Google Scholar 

  • Chandrasekharan P, Thomas H (1971b) Studies in Festuca. VI. Chromosome relationships between species of Bovinae and Scariosae. Z Pflanzenzucht 66:76–86

    Google Scholar 

  • Chen C, Sleper DA, Johal GS (1998) Comparative RFLP mapping of meadow and tall fescue. Theor Appl Genet 97:255–260

    Article  CAS  Google Scholar 

  • Chen L, Auh C, Chen F, Cheng XF, Aljoe H, Dixon RA, Wang Z-Y (2002) Lignin deposition and associated changes in anatomy, enzyme activity, gene expression and ruminal degradability in stems of tall fescue at different developmental stages. J Agric Food Chem 50:5558–5565

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Auh C, Dowling P, Bell J, Chen F, Hopkins A, Dixon RA, Wang Z-Y (2003) Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase. Plant Biotechnol J 1:437–449

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Auh C, Dowling P, Bell J, Lehmann D, Wang Z-Y (2004) Transgenic down-regulation of caffeic acid O-methyltransferase (COMT) led to improved digestibility in tall fescue (Festuca arundinacea). Funct Plant Biol 31:235–245

    Article  CAS  Google Scholar 

  • Cho MJ, Ha CD, Lemaux PG (2000) Production of transgenic tall fescue and red fescue plants by particle bombardment of mature seed-derived highly regenerative tissues. Plant Cell Rep 19:1084–1089

    Article  CAS  Google Scholar 

  • Christians N (2000) Fairway grass for Midwest golf course: diseases and tough climatic conditions make choices tricky. Golf Course Manag 68:49–56

    Google Scholar 

  • Clayton WD, Renvoize SA (1986) Genera Graminum. Grasses of the world. Kew Bull Add Ser 13:1–389

    Google Scholar 

  • Cvelev NN (1971) The taxonomy and phylogeny of genus Festuca L. of the U.S.S.R. flora. I. The system of the genus and main trends of evolution. Bot Zhurn 56:1252–1262 (in Russian)

    Google Scholar 

  • Cvelev NN (1976) Grasses of the Soviet Union. Nauka, Leningrad, USSR (in Russian)

    Google Scholar 

  • Darbyshire SJ (1993) Realignment of Festuca subgenus Schedonorus with the genus Lolium (Poaceae). Novon 3:239–243

    Article  Google Scholar 

  • Dong S, Qu R (2005) High efficiency transformation of tall fescue with Agrobacterium tumefaciens. Plant Sci 168:1453–1458

    Article  CAS  Google Scholar 

  • Ergon A, Fang C, Jorgensen O, Aamlid TS, Rognli OA (2006) Quantitative trait loci controlling vernalisation requirement, heading time and number of panicles in meadow fescue (Festuca pratensis Huds.). Theor Appl Genet 112:232–242

    Article  CAS  PubMed  Google Scholar 

  • Fang C, Aamlid TS, Jorgensen O, Rognli OA (2004) Phenotypic and genotypic variation in seed production traits within a full-sib family of meadow fescue. Plant Breed 123:241–246

    Article  Google Scholar 

  • Fjellheim S, Rognli OA (2005) Molecular diversity of local Norwegian meadow fescue (Festuca pratensis Huds.) populations and Nordic cultivars – consequences for management and utilisation. Theor Appl Genet 111:640–650

    Article  CAS  PubMed  Google Scholar 

  • Fjellheim S, Blomlie AB, Marum P, Rognli OA (2007) Phenotypic variation in local populations and cultivars of meadow fescue – potential for improving cultivars by utilizing wild germplasm. Plant Breed 126:279–286

    Article  CAS  Google Scholar 

  • Frankel OH, Brown AHD, Burdon JJ (1995) The conservation of plant biodiversity. Cambridge University Press, Cambridge

    Google Scholar 

  • Gao C, Long D, Lenk L, Nielsen KK (2008) Comparative analysis of transgenic tall fescue (Festuca arundinacea Schreb.) plants obtained by Agrobacterium-mediated transformation and particle bombardment. Plant Cell Rep 27:1601–1609

    Article  CAS  PubMed  Google Scholar 

  • Guo Y-D, Mizukami Y, Yamada T (2005) Genetic characterization of androgenic progeny derived from Lolium perenne×Festuca pratensis cultivars. New Phytol 166:455–464

    Article  CAS  PubMed  Google Scholar 

  • Guo Y-D, Hiroshi H, Shimamoto Y, Yamada T (2009) Transformation of androgenic-derived Festulolium plants (Lolium perenne L.×Festuca pratensis Huds.) by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 96:219–227

    Article  CAS  Google Scholar 

  • Hackel E (1882) Monographia Festucarum Europaeum. T. Fischer, Kassel, Berlin

    Google Scholar 

  • Harper JA, Thomas ID, Lovatt JA, Thomas HM (2004) Physical mapping of rDNA sites in possible diploid progenitors of polyploid Festuca species. Plant Syst Evol 245:163–168

    Article  CAS  Google Scholar 

  • Humphreys MW (1989) The controlled introgression of Festuca arundinacea genes into Lolium multiflorum. Euphytica 42:105–116

    Article  Google Scholar 

  • Humphreys MO (2005) Genetic improvement of forage crops – past, present and future. J Agric Sci 143:441–448

    Article  Google Scholar 

  • Humphreys MW, Pašakinskiene I (1996) Chromosome painting to locate genes for drought resistance transferred from Festuca arundinacea into Lolium multiflorum. Heredity 77:530–534

    Article  Google Scholar 

  • Humphreys MW, Thomas H (1993) Improved drought resistance in introgression lines derived from Lolium multiflorum × Festuca arundinacea hybrids. Plant Breed 111:155–161

    Article  Google Scholar 

  • Humphreys MW, Thomas HM, Morgan WG, Meredith MR, Harper JA, Thomas H, Zwierzykowski Z, Ghesquiere M (1995) Discriminating the ancestral progenitors of hexaploid Festuca arundinacea using genomic in situ hybridization. Heredity 75:171–174

    Article  Google Scholar 

  • Humphreys M, Thomas HM, Harper J, Morgan G, James A, Ghamari-Zare A, Thomas H (1997) Dissecting drought- and cold-tolerance traits in the LoliumFestuca complex by introgression mapping. New Phytol 137:55–60

    Article  Google Scholar 

  • Humphreys MW, Pašakinskienė I, James AR, Thomas H (1998a) Physically mapping quantitative traits for stress-resistance in the forage grasses. J Exp Bot 49:1611–1618

    Article  CAS  Google Scholar 

  • Humphreys MW, Zare AG, Pašakinskienė I, Thomas H, Rogers WJ, Collin HA (1998b) Interspecific genomic rearrangements in androgenic plants derived from a Lolium multiflorum×Festuca arundinacea (2n=5x=35) hybrid. Heredity 80:78–82

    Article  Google Scholar 

  • Humphreys MW, Canter PJ, Thomas HM (2003) Advances in introgression technologies for precision breeding within the LoliumFestuca complex. Ann Appl Biol 143:1–10

    Article  CAS  Google Scholar 

  • Humphreys J, Harper JA, Armstead IP, Humphreys MW (2005) Introgression-mapping of genes for drought resistance transferred from Festuca arundinacea var. glaucescens into Lolium multiflorum. Theor Appl Genet 110:579–589

    Article  CAS  PubMed  Google Scholar 

  • Jauhar PP (1993) Cytogenetics of the FestucaLolium complex. Springer, Heidelberg

    Google Scholar 

  • King IP, Morgan WG, Armstead IP, Harper JA, Hayward MD, Bollard A, Nash JV, Forster JW, Thomas HM (1998) Introgression mapping in the grasses. I. Introgression of Festuca pratensis chromosomes and chromosome segments into Lolium perenne. Heredity 81:462–467

    Article  CAS  Google Scholar 

  • King J, Roberts LA, Kearsey MJ, Thomas HM, Jones RN, Huang L, Armstead IP, Morgan WG, King IP (2002a) A demonstration of a 1:1 correspondence between chiasma frequency and recombination using a Lolium perenne/Festuca pratensis substitution. Genetics 161:307–314

    CAS  PubMed  Google Scholar 

  • King J, Armstead IP, Donnison IS, Thomas HM, Jones RN, Kearsey MJ, Robersts LA, Thomas A, Morgan WG, King IP (2002b) Physical and genetic mapping in the grasses Lolium perenne and Festuca pratensis. Genetics 161:315–324

    CAS  PubMed  Google Scholar 

  • King J, Armstead IP, Donnison SI, Roberts LS, Harper JA, Skøt K, Elborough K, King IP (2007) Comparative analyses between Lolium/Festuca introgression lines and rice reveal the major fraction of functionally annotated gene models is located in recombination-poor/very recombination-poor regions of the genome. Genetics 177:597–606

    Article  CAS  PubMed  Google Scholar 

  • Kopecký D, Lukaszewski AJ, Dolezˇel J (2008) Cytogenetics of Festulolium (Festuca/Lolium hybrids). Cytogenet Genome Res 120:370–383

    Article  PubMed  Google Scholar 

  • Kosmala A, Zwierzykowski Z, Gasior D, Rapacz M, Zwierzykowska E, Humphreys MW (2006) GISH/FISH mapping of genes for freezing tolerance transferred from Festuca pratensis to Lolium multiflorum. Heredity 96:243–251

    Article  CAS  PubMed  Google Scholar 

  • Leśniewska A, Ponitka A, Slusarkiewicz-Jarzina A, Zwierzykowska E, Zwierzykowski Z, James AR, Thomas H, Humphreys MW (2001) Androgenesis from Festuca pratensis×Lolium multiflorum amphidiploid cultivars in order to select and stabilize rare gene combinations for grass breeding. Heredity 86:167–176

    Article  PubMed  Google Scholar 

  • Maxted N, Ford-Lloyd BV, Hawkes JG (1997) Plant genetic conservation: the in-situ approach. Chapman & Hall, London

    Google Scholar 

  • Mian MAR, Saha MC, Hopkins AA, Wang ZY (2005) Use of tall fescue EST-SSRs in phylogenetic analysis of cool-season forage grasses. Genome 48:637–647

    Article  CAS  PubMed  Google Scholar 

  • Mian MAR, Zhang Y, Wang ZJ-Y, Cheng X, Chen L, Chekhovskiy K, Dai X, Mao C, Cheung F, Zhao X, He J, Scott AD, Town CD, May GD (2008) Analysis of tall fescue ESTs representing different abiotic stresses, tissue types and developmental stages. BMC Plant Biol 8:27

    Article  PubMed  CAS  Google Scholar 

  • Momotaz A, Forster JW, Yamada T (2004) Identification of cultivars and accessions of Lolium, Festuca and Festulolium hybrids through the detection of simple sequence repeat (SSR) polymorphism. Plant Breed 123:370–376

    Article  CAS  Google Scholar 

  • Müller J, Catalán P (2006) Notes on the infrageneric classification of Festuca L. (Gramineae). Taxon 55:139–144

    Article  Google Scholar 

  • Pašakinskienė I, Anamthawat-Jonsson K, Humphreys MW, Jones RN (1997) Novel diploids following chromosome elimination and somatic recombination in Lolium multiflorum×Festuca arundinacea hybrids. Heredity 78:464–469

    Article  Google Scholar 

  • Peeters A (2004) Wild and sown grasses. Blackwell Pub, Rome

    Google Scholar 

  • Peter-Schmid MKI, Boller B, Kölliker R (2008a) Habitat and management affect genetic structure of Festuca pratensis but not Lolium multiflorum ecotype populations. Plant Breed 127:510–517

    Article  Google Scholar 

  • Peter-Schmid MKI, Kölliker R, Boller B (2008b) Value of permanent grassland habitats as reservoirs of Festuca pratensis Huds. and Lolium multiflorum Lam. populations for breeding and conservation. Euphytica 164:239–253

    Article  Google Scholar 

  • Rapacz M, Gasior D, Zwierzykowski Z, Lesniewska-Bocianowska A, Humphreys MW, Gay AP (2004) Changes in cold tolerance and the mechanisms of acclimation of photosystem II to cold hardening generated by anther culture of Festuca pratensis×Lolium multiflorum cultivars. New Phytol 162:105–114

    Article  CAS  Google Scholar 

  • Ruemmele BA, Wipft JK, Brilman L, Hignight KW (2003) Fine-leaved Festuca species. In: Casler MD, Duncan RR (eds) Turfgrass biology, genetics and breeding. Wiley, New Jersey, pp 129–174

    Google Scholar 

  • Saha MC, Mian MAR, Eujayl I, Zwonitzer JC, Wang LJ, May GD (2004) Tall fescue EST-SSR markers with transferability across several grass species. Theor Appl Genet 109:783–791

    Article  PubMed  Google Scholar 

  • Saha MC, Mian R, Zwonitzer JC, Chekhovskiy K, Hopkins AA (2005) An SSR- and AFLP-based genetic linkage map of tall fescue (Festuca arundinacea Schreb.). Theor Appl Genet 110:323–336

    Article  CAS  PubMed  Google Scholar 

  • Saint-Yves A (1922) The Festuca (subg. Eu-Festuca) of North Africa and of the Atlantic Islands. Candollea 1:1–63 (in French)

    Google Scholar 

  • Seal AG (1983) DNA variation in Festuca. Heredity 50:225–236

    Article  CAS  Google Scholar 

  • Sleper DA (1985) Breeding tall fescue. Plant Breed Rev 3:313–342

    Google Scholar 

  • Sleper DA, West CP (1996) Tall fescue. In: Moser LE, Buxton DR, Casler MD (eds) Cool-season forage grasses. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI, pp 471–502

    Google Scholar 

  • Šmarda P (2006) DNA ploidy levels of Romanian fescues (Festuca L., Poaceae), measured in living plants and herbarium specimens. Folia Geobot 41:417–432

    Article  Google Scholar 

  • Šmarda P (2008) DNA ploidy level variability of some fescues (Festuca subg. Festuca, Poaceae) from Central and Southern Europe measured in fresh plants and herbarium specimens. Biologia 63:349–367

    Article  CAS  Google Scholar 

  • Šmarda P, Kočí K (2005) Festuca alpina, a new species for the flora of Slovakia. Biologia 60:383–385

    Google Scholar 

  • Šmarda P, Stančík D (2006) Ploidy level variability in South American fescues (Festuca L., Poaceae): use of flow cytometry in up to 5 1/2-year-old caryopses and herbarium specimens. Plant Biol 8:73–80

    Article  PubMed  CAS  Google Scholar 

  • Šmarda P, Müller J, Vrána J, Kočí K (2005) Ploidy level variability of some Central European fescues (Festuca L. subg. Festuca, Poaceae). Biologia 60:25–36

    Google Scholar 

  • Šmarda P, Bures P, Horova L, Foggi B, Rossi G (2008a) Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction. Ann Bot 101:421–433

    Article  PubMed  CAS  Google Scholar 

  • Šmarda P, Bures P, Horova L, Rotreklov O (2008b) Intrapopulation genome size dynamics in Festuca pallens. Ann Bot 102:599–607

    Article  PubMed  Google Scholar 

  • Spangenberg G, Valles MP, Wang Z-Y, Montavon P, Nagel J, Potrykus I (1994) Asymmetric somatic hybridization between tall fescue (Festuca arundinacea Schreb) and irradiated Italian ryegrass (Lolium multiflorum Lam) protoplasts. Theor Appl Genet 88:509–516

    Article  Google Scholar 

  • Spangenberg G, Wang Z-Y, Wu XL, Nagel J, Iglesias VA, Potrykus I (1995) Transgenic tall fescue (Festuca arundinacea) and red fescue (F. rubra) plants from microprojectile bombardment of embryogenic suspension cells. J Plant Physiol 145:693–701

    CAS  Google Scholar 

  • Spangenberg G, Kalla R, Lidgett A, Sawbridge T, Ong EK, John U (2001) Breeding forage plants in the genome era. In: Spangenberg G (ed) Molecular breeding of forage crops. Kluwer Academic Publishers, Dordrecht, pp 1–39

    Google Scholar 

  • Takamizo T, Spangenberg G, Suginobu K, Potrykus I (1991) Somatic hybridization in Gramineae: somatic hybrid plants between tall fescue (Festuca arundinacea Schreb.) and Italian ryegrass (Lolium multiflorum Lam.). Mol Gen Genet 231:1–6

    Article  CAS  PubMed  Google Scholar 

  • Tamura T, Yonemaru J, Hisano H, Kanamori H, King J, King IP, Tase K, Sanada Y, Komatsu T, Yamada T (2009) Development of intron-flanking EST markers for the Lolium/Festuca complex using rice genomic information. Theor Appl Genet 118:1549–1560

    Article  CAS  PubMed  Google Scholar 

  • Thomas H, Humphreys MO (1991) Progress and potential of interspecific hybrids of Lolium and Festuca. J Agric Sci 117:1–8

    Article  Google Scholar 

  • Thomas H, Morgan WG, Humphreys MW (1988) The use of a triploid hybrid for introgression in Lolium species. Theor Appl Genet 76:299–304

    Google Scholar 

  • Thomas HM, Morgan WG, Meredith MR, Humphreys MW, Thomas H, Leggett JM (1994) Identification of parental and recombined chromosomes of Lolium multiflorum × Festuca pratensis by genome in situ hybridization. Theor Appl Genet 88:909–913

    Article  Google Scholar 

  • Thomas HM, Harper JA, Meredith MR, Morgan WG, King IP (1997) Physical mapping of ribosomal DNA sites in Festuca arundinacea and related species by in situ hybridization. Genome 40:406–410

    Article  CAS  PubMed  Google Scholar 

  • Torrecilla P, López-Rodríguez JA, Catalán P (2004) Phylogenetic relationships of Vulpia and related genera (Poeae, Poaceae) based on analysis of ITS and trnL-F sequences. Ann Mo Bot Gard 91:124–158

    Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol Lett 8:857–874

    Article  Google Scholar 

  • Wang JP, Bughrara SS (2007) Monitoring of gene expression profiles and identification of candidate genes involved in drought responses in Festuca mairei. Mol Genet Genomics 277:571–587

    Article  CAS  PubMed  Google Scholar 

  • Wang JP, Bughrara SS (2008) Evaluation of drought tolerance for Atlas fescue, perennial ryegrass, and their progeny. Euphytica 164:113–122

    Article  Google Scholar 

  • Wang Z-Y, Ge Y (2005) Agrobacterium-mediated high efficiency transformation of tall fescue (Festuca arundinacea Schreb.). J Plant Physiol 162:103–113

    Article  CAS  PubMed  Google Scholar 

  • Wang Z-Y, Ye XD, Nagel J, Potrykus I, Spangenberg G (2001) Expression of a sulphur-rich sunflower albumin gene in transgenic tall fescue (Festuca arundinacea Schreb.) plants. Plant Cell Rep 20:213–219

    Article  CAS  Google Scholar 

  • Wang Z-Y, Bell J, Ge YX, Lehmann D (2003) Inheritance of transgenes in transgenic tall fescue (Festuca arundinacea Schreb.). In Vitro Cell Dev Biol Plant 39:277–282

    Article  CAS  Google Scholar 

  • Wang JP, Bughrara SS, Mian RMA, Saha MC, Sleper DS (2009) Parental genome composition and genetic classifications of derivatives from intergeneric crosses of Festuca mairei and Lolium perenne. Mol Breed 23:299–309

    Article  CAS  Google Scholar 

  • Wilkins PW (1991) Breeding perennial ryegrass for agriculture. Euphytica 52:201–214

    Article  Google Scholar 

  • Yamada T, Kishida T (2003) Genetic analysis of forage grasses based on heterologous RFLP markers detected by rice cDNAs. Plant Breed 122:57–60

    Article  CAS  Google Scholar 

  • Yamada T, Forster JW, Humphreys MW, Takamizo T (2005) Genetics and molecular breeding in Lolium/Festuca grass species complex. Grassl Sci 51:89–106

    Article  CAS  Google Scholar 

  • Yamada T, Guo Y-G, Mizukami Y, Tamura K, Tase K (2007) Introgression breeding program in Lolium/Festuca complex using androgenesis. In: Xu Z et al (eds) Proceedings 11th IAPTC&B congress – biotechnology and sustainable agriculture 2006 and beyond. Springer, Dordrecht, pp 447–450

    Chapter  Google Scholar 

  • Zare A-G, Humphreys MW, Rogers WJ, Collin HA (1999) Androgenesis from a Lolium multiflorum×Festuca arundinacea hybrid to generate extreme variation for freezing-tolerance. Plant Breed 118:497–501

    Article  Google Scholar 

  • Zwierzykowski Z, Zwierzykowska E, Slusarkiewicz-Jarzina A, Ponitka A (1999) Regeneration of anther-derived plants from pentaploid hybrids of Festuca arundinacea×Lolium multiflorum. Euphytica 105:191–195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yamada, T. (2011). Festuca . In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14255-0_9

Download citation

Publish with us

Policies and ethics