Skip to main content

An Efficient Approach for Mining Segment-Wise Intervention Rules in Time-Series Streams

  • Conference paper
  • 1652 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6184))

Abstract

Huge time-series stream data are collected every day from many areas, and their trends may be impacted by outside events, hence biased from its normal behavior. This phenomenon is referred as intervention. Intervention rule mining is a new research direction in data mining with great challenges. To solve these challenges, this study makes the following contributions: (a) Proposes a framework to detect intervention events in time-series streams, (b) Proposes approaches to evaluate the impact of intervention events, and (c) Conducts extensive experiments both on real data and on synthetic data. The results of the experiments show that the newly proposed methods reveal interesting knowledge and perform well with good accuracy and efficiency.

Supported by the National Science Foundation of China under Grant No.60773169, the 11th Five Years Key Programs for Sci.and Tech. Development of China under grant No.2006BAI05A01.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang, Y., Tang, C., Yang, N., Chen, Y., Li, C., Tang, R., Zhu, J.: Intervention Events Detection and Prediction in Data Streams. In: Li, Q., Feng, L., Pei, J., Wang, S.X., Zhou, X., Zhu, Q.-M. (eds.) APWeb/WAIM 2009. LNCS, vol. 5446, pp. 519–525. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. La, T., Cui, B., Li, H.Y., et al.: PGG: An online pattern based approach for stream variation management. Journal Of Computer Science And Technology 23(4), 497–515 (2008)

    Article  Google Scholar 

  3. Teng, W.-G., Chen, M.-S., Yu, P.S.: A regression-based temporal pattern mining scheme for data streams. In: Proc. 29th VLDB Conference (2003)

    Google Scholar 

  4. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams, pp. 81–92 (2003)

    Google Scholar 

  5. Chen, Y., Dong, G., Han, J., Wah, B.W., Wang, J.: MultiDimensional Regression Analysis of Time-Series Data Streams. In: Proc. VLDB (2002)

    Google Scholar 

  6. Zhu, Y., Shasha, D.: StatStream: Statistical Monitoring of Thousands of Data Streams in Real Time. In: VLDB 2002 (2002)

    Google Scholar 

  7. Chen, S., Wang, H., Zhou, S., Yu, P.S.: Stop Chasing Trends: Discovering High Order Models in Evolving Data. In: ICDE 2008 (2008)

    Google Scholar 

  8. Wang, H., Yin, J., Pei, J., Yu, P.S., Yu, J.X.: Suppressing Model Overfitting in Mining Concept-Drifting Data Streams. In: SIGKDD (2006)

    Google Scholar 

  9. Dora Cai, Y., Clustter, D., Pape, G., Han, J., Welge, M., Auvil, L.: MAIDS: Mining Alarming Incidents from Data Streams. In: Proc. ACM SIGMOD (2004)

    Google Scholar 

  10. Han, J., Gong, W., Yin, Y.: Mining Segment-Wise Periodic Patterns in Time-Related Databases. In: Proc. Int. Conf. on Knowledge Discovery and Data Mining (1998)

    Google Scholar 

  11. Yang, J., Wang, W., Yu, P.S.: Mining Asynchronous Periodic Patterns in Time Series Data. IEEE Trans. on Knowledge and Data Enginneering (2003)

    Google Scholar 

  12. Kleinberg, J.: Bursty and Hierarchical Structure in Streams. In: SIGKDD 2002 (2002)

    Google Scholar 

  13. Ihler, A., Hutchins, J., Smyth, P.: Adaptive Event Detection with TimeVarying Poisson Processes. In: SIGKDD 2006 (2006)

    Google Scholar 

  14. Curry, C., Grossman, R., Lockie, D., Vjcil, S., Bugajski, J.: Detecting Changes in Large Data Sets of Payment Card Data: A Case Study. In: Proc. SIGKDD (2007)

    Google Scholar 

  15. http://finance.yahoo.com

  16. http://archive.ics.uci.edu/ml/datasets/Dodgers+Loop+Sensor

  17. Consul, P.C., Jain, G.C.: A generalization of the Poisson distribution. Technometrics (1973)

    Google Scholar 

  18. http://jsci.sourceforge.net/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Y., Zuo, J., Yang, N., Duan, L., Li, HJ., Zhu, J. (2010). An Efficient Approach for Mining Segment-Wise Intervention Rules in Time-Series Streams. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds) Web-Age Information Management. WAIM 2010. Lecture Notes in Computer Science, vol 6184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14246-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14246-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14245-1

  • Online ISBN: 978-3-642-14246-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics