Advertisement

Application of a New Roughness Extension for k − ω Turbulence Models

  • Bernhard Eisfeld
  • Tobias Knopp
  • Javier Bartolome Calvo
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 112)

Summary

The roughness extension of Knopp, Eisfeld and Calvo (KEC) [4] for kω type turbulence models has been applied to the flow through rough pipes, over a flat plate and around the NACA 652-215 airfoil with a rough surface. The results are compared to predictions using the boundary condition originally devised by Wilcox [11] for rough surfaces, and to predictions with the Spalart-Allmaras model with the Boeing roughness extension by Aupoix and Spalart (ASB) [2]. Good agreement with experiments has been achieved with respect to the influence of the roughness on the velocity profile, the skin friction coefficient and the loss in lift.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott, I.H., von Doenhoff, A.S.: Theory of Wing Sections. Dover Publications, New York (1959)Google Scholar
  2. 2.
    Aupoix, B., Spalart, P.R.: Extensions of the Spalart-Allmaras model to account for wall roughness. International Journal of Heat and Fluid Flow 24, 454–462 (2003)CrossRefGoogle Scholar
  3. 3.
    Hellsten, A., Laine, S.: Extension of the k ω-SST turbulence models for flows over rough surfaces. AIAA-Paper 97-3577 (1997)Google Scholar
  4. 4.
    Knopp, T., Eisfeld, B., Calvo, J.B.: A new extension for k − ω turbulence models to account for wall roughness. International Journal of Heat and Fluid Flow 30, 54–65 (2009)CrossRefGoogle Scholar
  5. 5.
    Ligrani, P.M., Moffat, R.J.: Structure of transitionally rough and fully rough turbulent boundary layers. Journal of Fluid Mechanics 162, 69–98 (1986)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Ljungström, B.: Wind tunnel investigations of simulatied hoar frost on a 2-dimensional wing section with and without high lift devices. FFA, Report AU-902 (1972)Google Scholar
  7. 7.
    Menter, F.R.: Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal 32, 1598–1605 (1994)CrossRefGoogle Scholar
  8. 8.
    Nikuradse, J.: Strömungsgesetze in rauhen Rohren. VDI-Forschungsheft 361 (1933)Google Scholar
  9. 9.
    Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-Code: Recent Applications in Research and Industry. In: Wesseling, P., Oñate, P.J. (eds.) Proceedings of ECCOMAS (2006)Google Scholar
  10. 10.
    Spalart, P.R., Allmaras, S.R.: A One-Equation Turbulence Model for Aerodynamic Flows. AIAA-Paper, 92-439 (1992)Google Scholar
  11. 11.
    Wilcox, D.C.: Reassessment of the Scale Determining Equation for Advanced Turbulence Models. AIAA Journal 26, 1299–1310 (1988)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bernhard Eisfeld
    • 1
  • Tobias Knopp
    • 2
  • Javier Bartolome Calvo
    • 1
  1. 1.Institute of Aerodynamics and Flow TechnologyGerman Aerospace Center (DLR)BraunschweigGermany
  2. 2.Institute of Aerodynamics and Flow TechnologyGerman Aerospace Center (DLR)GöttingenGermany

Personalised recommendations