Skip to main content

Analysis of High-Lift Generated Noise via a Hybrid LES/CAA Method

  • Conference paper
New Results in Numerical and Experimental Fluid Mechanics VII

Summary

The flow field and the acoustic field of a high-lift configuration consisting of a slat and a main wing are numerically investigated by an efficient hybrid LES/CAA method. The flow parameters are Ma = 0.16, Re = 1.4*106, and α= 13 deg. The simulated flow is in good agreement with experimental findings. The turbulent flow structures especially in the slat cove shear layer reveal patterns similar to those observed in a plane shear layer and an impinging jet, respectively. The acoustic analyses identify the slat gap as the origin of tonal and broadband noise ranging from 1 to 3 kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy simulation. Fluid Dynamics Research 10, 199–228 (1992)

    Article  Google Scholar 

  2. Choudhari, M.M., Khorrami, M.R.: Slat cove unsteadiness: Effect of 3d flow structures. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2006-0211 (2006)

    Google Scholar 

  3. Ewert, R., Schröder, W.: Acoustic perturbation equations based on flow decomposition via source filtering. Journal of Computational Physics 188, 365–398 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ewert, R., Schröder, W.: On the simulation of trailing edge noise with a hybrid LES/RANS method. Journal of Sound and Vibration 270, 509–524 (2004)

    Article  Google Scholar 

  5. Ewert, R., Zhang, Q., Schröder, W., Delfs, J.: Computation of trailing edge noise of a 3d lifting airfoil in turbulent subsonic flow. AIAA Paper 2003-3114 (2003)

    Google Scholar 

  6. Hu, F.Q., Hussaini, M.Y., Manthey, J.L.: Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics. Journal of Computational Physics 124(1), 177–191 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Israeli, M., Orszag, S.A.: Approximation of radiation boundary conditions. Journal of Computational Physics 41, 115–135 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kolb, A., Faulhaber, P., Drobietz, R., Grünewald, M.: Aeroacoustic wind tunnel measurements on a 2d high-lift configuration. In: 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference), AIAA 2007-3447 (May 2007)

    Google Scholar 

  10. Liou, M.-S., Steffen, C.J.: A new flux splitting scheme. Journal of Computational Physics 107, 23–39 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Meinke, M., Schröder, W., Krause, E., Rister, T.: A comparison of second- and sixth-order methods for large-eddy simulations. Computers and Fluids 31, 695–718 (2002)

    Article  MATH  Google Scholar 

  12. Rogers, M.M., Moser, R.D.: The three-dimensional evolution of a plane mixing layer: the Kelvin-Helmholtz rollup. Journal of Fluid Mechanics 243, 183–226 (1992)

    Article  MATH  Google Scholar 

  13. Sakakibara, J., Hishida, K., Phillips, W.R.C.: On the vortical structure in an plane impinging jet. Journal of Fluid Mechanics 434, 273–300 (2001)

    Article  MATH  Google Scholar 

  14. Schröder, W., Ewert, R.: LES-CAA Coupling. In: LES for Acoustics, Cambridge University Press, Cambridge (2005)

    Google Scholar 

  15. Shang, J.S.: High-order compact-difference schemes for time dependent maxwell equations. Journal of Computational Physics 153, 312–333 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Tam, C.K.W., Webb, J.C.: Dispersion-relation-preserving finite difference schemes for computational acoustics. Journal of Computational Physics 107(2), 262–281 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Vasilyev, O.V., Lund, T.S., Moin, P.: A general class of commutative filters for LES in complex geometries. Journal of Computational Physics 146, 82–104 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

König, D. et al. (2010). Analysis of High-Lift Generated Noise via a Hybrid LES/CAA Method. In: Dillmann, A., Heller, G., Klaas, M., Kreplin, HP., Nitsche, W., Schröder, W. (eds) New Results in Numerical and Experimental Fluid Mechanics VII. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14243-7_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14243-7_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14242-0

  • Online ISBN: 978-3-642-14243-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics