Skip to main content

Analysis of the Heat Transfer in Liquid Rocket Engine Cooling Channels

  • Conference paper
Book cover New Results in Numerical and Experimental Fluid Mechanics VII

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 112))

Summary

Simulations of supercritical nitrogen flow in cooling channels are compared with experimental results provided by EADS-Astrium Ottobrunn. The objective is to extend and validate the DLR-Tau code to compute and predict the heat transfer in cooling channels of liquid rocket engines. To simulate the flow accurately, the roughness of the surface, the thermophysical properties of the supercritical fluid, as well as the conduction in the structure are modeled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aupoix, B., Spalart, P.R.: Extensions of the Spalart-Allmaras turbulence model to account for wall roughness. International Journal of Heat and Fluid Flow 24, 454–462 (2003)

    Article  Google Scholar 

  2. Bartolome Calvo, J., Mack, A.: Study of the Heating of a Hypersonic Vehicle launched by a Lorentz Rail Accelerator. International Review of Aerospace Engineering 1, 269–277 (2008)

    Google Scholar 

  3. Dipprey, D.F., Sabersky, R.H.: Heat and Momentum Transfer in ssmooth and rough tubes at various Pradntl numbers. International Journal of Heat and Mass Transfer 6, 329–332 (1963)

    Article  Google Scholar 

  4. Fröhlich, A., Immich, H., LeBail, F., Popp, M.: Three-Dimensional Flow Analysis in a Rocket Engine Coolant Channel of High Depth/Width Ratio. In: AIAA 91-2183 (1991)

    Google Scholar 

  5. Fröhlich, A., Popp, M., Schmidt, G., Thelemann, D.: Heat Transfer Characteristics of H2/O2 Combustion Chambers. AIAA 93-1826 (1993)

    Google Scholar 

  6. Immich, H., Altling, J., Kretschmer, J., Preclick, D.: Technology Developments for Thrust Chambers of Future Launch Vehicle Liquid Rocket Engines. Acta Astronautica 53, 597–605 (2003)

    Article  Google Scholar 

  7. Knopp, T., Eisfeld, B., Bartolome Calvo, J.: A new extension for k-omega turbulence models to account for wall roughness. International Journal of Heat and Fluid Flow (2009) (to appear)

    Google Scholar 

  8. Kuhl, D., Riccius, J., Haidn, O.J.: Thermomechanical Analysis and Optimization of Cryogenic Liquid Rocket Engines. Journal of Propulsion and Power 18, 835–846 (2002)

    Article  Google Scholar 

  9. Lemmon, E.W., Jacobsen, R.T.: Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air. International Journal of Thermophysics 25, 21–69 (2004)

    Article  Google Scholar 

  10. Liu, Q.Y., Like, E.A., Cinnella, P.: Coupling Heat Transfer and Fluid Flow Solvers for Multidisciplinary Simulation. Journal of Thermophysics and Heat Transfer 19, 417–427 (2005)

    Article  Google Scholar 

  11. Mack, A., Schäfer, R.: Fluid Structure Interaction on a Generic Body-Flap Model in Hypersonic Flow. Journal of Spacecraft and Rockets 42, 769–779 (2005)

    Article  Google Scholar 

  12. Naraghi, M.H., Dunn, S., Coats, D.: A Model for Design and Analysis of Regeneratively Cooled Rocket Engines. AIAA 2004-03852 (2004)

    Google Scholar 

  13. Nikuradse, J.: Strömungsgesetze in rauhen Rohren. VDI-Forschungsheft 361 (1933)

    Google Scholar 

  14. Quentmeyer, R.J.: Experimental Fatigue Life Investigation of Cylindrical Thrust Chambers. NASA TM X-73665 (1977)

    Google Scholar 

  15. Radespiel, R., Turkel, E., Kroll, N.: Assesment of Preconditioning Methods. DLR-Forschungsbericht 95-29 (1995)

    Google Scholar 

  16. Span, R., Lemmon, E.W., Jacobsen, R.T., Wagner, W.: A Reference Quality Equation of State for Nitrogen. International Journal of Thermophysics 19, 1121–1132 (1998)

    Article  Google Scholar 

  17. Wang, Q., Wu, F., Zeng, M., Luo, L., Sun, J.: Numerical simulation and optimization on heat transfer and fluid flow in cooling channel of liquid rocket engine thrust chamber. International Journal for computer aided Engineering and Software 23, 907–921 (2006)

    Article  MATH  Google Scholar 

  18. Woschnak, A., Suslov, D., Oschwald, M.: Experimental and Numerical Investigation of thermal Stratification Effects. AIAA 2003-3214 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Calvo, J.B., Hannemann, K. (2010). Analysis of the Heat Transfer in Liquid Rocket Engine Cooling Channels. In: Dillmann, A., Heller, G., Klaas, M., Kreplin, HP., Nitsche, W., Schröder, W. (eds) New Results in Numerical and Experimental Fluid Mechanics VII. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14243-7_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14243-7_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14242-0

  • Online ISBN: 978-3-642-14243-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics