Advertisement

An Efficient One-Shot Algorithm for Aerodynamic Shape Design

  • Emre Özkaya
  • Nicolas R. Gauger
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 112)

Summary

In this paper we consider the shape optimization of a transonic airfoil whose aerodynamic properties are calculated by a structured Euler solver. The optimization strategy is based on a one-shot technique in which pseudo time-steps of the primal and the adjoint solver are iterated simultaneously with design corrections done on the airfoil geometry. The adjoint solver which calculates the necessary sensitivities is based on discrete adjoints and derived by using reverse mode of automatic differentiation (AD). A design example of drag minimization for an RAE2822 airfoil under transonic flight conditions and lift constraints is included.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Christianson, B.: Reverse accumulation and attractive fixed points. Optimization Methods and Software 3, 311–326 (1994)CrossRefGoogle Scholar
  2. 2.
    Gauger, N., Walther, A., Moldenhauer, C., Widhalm, M.: Automatic differentiation of an entire design chain for aerodynamic shape optimization. In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol. 96, pp. 454–461 (2006)Google Scholar
  3. 3.
    Gauger, N., Brezillon, J.: The continuous adjoint approach in aerodynamic shape optimization. In: MEGAFLOW-Numerical Flow Simulation for Aircraft Design, Notes on Numerical Fluid Mechanics and Multidisciplinary Design. NNFM, vol. 89, pp. 181–195. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Gauger, N., Griewank, A., Riehme, J.: Extension of fixed point PDE solvers for optimal design by single-step one-shot method. European Journal of Computational Mechanics (REMN) 17, 87–102 (2008)Google Scholar
  5. 5.
    Geiger, K., Kanzow, C.: Theorie und Numerik restringierter Optimierungsaufgaben. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  6. 6.
    Griewank, A., Hamdi, A.: Properties of an augmented Lagrangian for design optimization. DFG SPP 1253 Preprints: SPP1253-11-01 (2008)Google Scholar
  7. 7.
    Griewank, A.: Evaluating Derivatives: Principles and techniques of Algorithmic Differentiation. SIAM, Philadelphia (2000)zbMATHGoogle Scholar
  8. 8.
    Hamdi, A., Griewank, A.: Reduced quasi-Newton method for simultaneous design and optimization. DFG SPP 1253 Preprints: SPP1253-11-02 (2008)Google Scholar
  9. 9.
    Hazra, S.B., Schulz, V., Brezillon, J., Gauger, N.: Aerodynamic shape optimization using simultaneous pseudo-time stepping. Journal of Computational Physics 204(1), 46–64 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Heinrich, R.: Implementation and usage of structured algorithms within an unstructured CFD code. In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol. 92 (2006)Google Scholar
  11. 11.
    Jameson, A.: Aerodynamic design via control theory. Journal of Scientific Computing 3, 233–260 (1988)zbMATHCrossRefGoogle Scholar
  12. 12.
    Mohammadi, B., Pironneau, O.: Applied shape optimization for fluids. Oxford Univ. Press, Oxford (2002)Google Scholar
  13. 13.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operational Research (1999)Google Scholar
  14. 14.
    Schlenkrich, S., Walther, A., Gauger, N., Heinrich, R.: Differentiating fixed point iterations with ADOL-C: Gradient calculation for fluid dynamics. In: Proceedings of Third International Conference on High Performance Scientific Computing Hanoi, March 6-10, pp. 489–508 (2006)Google Scholar
  15. 15.
    Walther, A., Kowarz, A., Griewank, A.: ADOL-C: A package for the automatic differentiation of algorithms written in C/C++ (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Emre Özkaya
    • 1
  • Nicolas R. Gauger
    • 1
    • 2
  1. 1.Department of MathematicsHumboldt University BerlinBerlinGermany
  2. 2.German Aerospace Center (DLR)Institute of Aerodynamics and Flow TechnologyBraunschweigGermany

Personalised recommendations