Advertisement

Simultaneous Measurements of Unsteady Aerodynamic Loads, Flow Velocity Fields, Position and Wing Deformations of MAVs in Plunging Motion

  • R. Konrath
  • B. Schlager
  • T. Kirmse
  • J. Kompenhans
  • T. J. Möller
  • R. Wokoeck
  • M. Emge
  • R. Radespiel
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 112)

Summary

A new wind tunnel environment for low Reynolds number testing of Micro Air Vehicles (MAV) is introduced, providing a test rig for plunge and pitch motions and a 6-component force balance. In this study a rigid as well as a flexible version of a typical MAV wing is investigated. Optical measurements techniques are adapted to measure simultaneously the instantaneous model position, orientation, wing deformations and flow fields.

Keywords

Particle Image Velocimetry Pressure Sensitive Paint Bottom Dead Center Optical Measurement Technique Flexible Version 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mueller, T.J., de Laurier, J.D.: An Overview of Micro Air Vehicle Aerodynamics. In: Mueller, T.J. (ed.) Fixed and Flapping Wing Aerodynamics for Mirco Air Vehicle Applications, ch. 1, pp. 1–10. AIAA (2001)Google Scholar
  2. 2.
    Torres, G.E., Mueller, T.J.: Low-Aspect-Ratio Wing Aerodynamics at Low Reynolds Numbers. AIAA Journal 42(5), 865–873 (2004)CrossRefGoogle Scholar
  3. 3.
    Jones, K.D., Lund, T.C., Platzer, M.F.: Experimental and computational investigation of flapping wing propulsion for micro air vehicles. In: Mueller, T.J. (ed.) Fixed and Flapping Wing Aerodynamics for Mirco Air Vehicle Applications, ch. 16, pp. 307–339. AIAA (2001)Google Scholar
  4. 4.
    Jadhav, G., Massey, K.: The development of a miniature flexible flapping wing mechanism for use in a robotic air vehicle. AIAA Paper 2007-668, vol. 11 (2007)Google Scholar
  5. 5.
    Shkarayev, S., Null, W., Wagner, M.: Development of micro air vehicle technology with in-flight adaptive-wing structure. NASA/CR-2004-213271, 36 (2004)Google Scholar
  6. 6.
    Wokoeck, R., Möller, T., Emge, M., Schüssler, J., Radespiel, R.: Experimental Investigation of the Aerodynamic Properties of Mirco Aerial Vehicles in Motion. In: Proc. of European Micro Air Vehicle Conference, Braunschweig, Germany (2008)Google Scholar
  7. 7.
    Kirmse, T., Wagner, A.: Advanced methods for in-flight flap gap and wing deformation measurements in the project AWIATOR. In: Proc. of 1st CEAS European Air and Space Conference, Berlin (Germany), September 10-13, Paper 206, p. 7 (2007)Google Scholar
  8. 8.
    Konrath, R., Klein, C., Schröder, A., Kompenhans, J.: Combined application of pressure sensitive paint and particle image velocimetry to the flow above a delta wing. Exp. Fluids 44, 357–366 (2008)CrossRefGoogle Scholar
  9. 9.
    Broeren, A.P., Bragg, M.J.: Unsteady stalling characteristics of thin airfoils at low Reynolds number. In: Mueller), T.J. (ed.) Fixed and Flapping Wing Aerodynamics for Mirco Air Vehicle Applications, ch. 10, pp. 191–213. AIAA (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • R. Konrath
    • 1
  • B. Schlager
    • 1
  • T. Kirmse
    • 1
  • J. Kompenhans
    • 1
  • T. J. Möller
    • 2
  • R. Wokoeck
    • 2
  • M. Emge
    • 2
  • R. Radespiel
    • 2
  1. 1.German Aerospace Center (DLR)Institute of Aerodynamics and Flow TechnologyGöttingenGermany
  2. 2.Institute of Fluid MechanicsTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations