Numerical Investigation of Transition Control by Porous Surfaces in Hypersonic Boundary Layers

  • Heinrich Lüdeke
  • Neil D. Sandham
  • Viola Wartemann
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 112)


The present numerical investigation of the effect of porous surfaces on transition in hypersonic boundary layers is intended to improve understanding of the physical mechanisms and to provide numerical tools for the prediction of the associated delay in transition. Direct numerical simulations are carried out by a 4th order version of the DLR-Flower code, compared with the results of linear stability theory. Good agreement of both approaches and an accurate prediction of the damping of the Mack-mode instability which is responsible for supersonic transition is demonstrated.


Direct Numerical Simulation Porous Surface Linear Stability Theory Hypersonic Boundary Layer Blunt Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mack, L.M.: Boundary layer linear stability theory. AGARD Special course on stability and transition of laminar flow (1984)Google Scholar
  2. 2.
    Fedorov, A.V., Malmuth, N.D., Rasheed, A., Hornung, H.G.: Stabilization of hypersonic boundary layers by porous coatings. AIAA Journal 39(4), 605–610 (2001)CrossRefGoogle Scholar
  3. 3.
    Enk, S.: Ein Verfahren höherer Ordnung in FLOWer für LES. DLR IB-124-2007/8, Institut für Aerodynamik und Strömungstechnik, Braunschweig, Germany (2007)Google Scholar
  4. 4.
    Rosenboom, I., Hein, S., Dallmann, U.: Influence of Nose Bluntness on Boundary Layer Instabilities in Hypersonic Cone Flows. In: AIAA 99-3591, 30th AIAA Fluid Dynamics Conference, Norfolk, Virginia, June 28 -July 1 (1999)Google Scholar
  5. 5.
    Malik, M.R.: Numerical methods for hypersonic boundary layer stability. Journal of Computational Physics 86(2), 376–413 (1990)zbMATHCrossRefGoogle Scholar
  6. 6.
    Sandham, N.D., Lüdeke, H.: A numerical study of Mach 6 boundary layer stabilization by means of a porous surface. In: AIAA Aerospace Sciences Meeting 2009, Orlando USA (2009)Google Scholar
  7. 7.
    Hein, S., Bertolotti, F.P., Simen, M., Hanifi, A., Henningson, D.: Linear nonlocal instability analysis - the linear NOLOT code. DLR-IB 223-94 A56 (1994)Google Scholar
  8. 8.
    Stetson, K.F., Thompson, E.R., Donaldson, J.C., Siler, L.G.: Laminar boundary layer stability experiments on a cone at Mach 8, Part 2: Blunt cone. In: AIAA Paper 84-0006 (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Heinrich Lüdeke
    • 1
  • Neil D. Sandham
    • 2
  • Viola Wartemann
    • 1
  1. 1.DLR BraunschweigInstitut für Aerodynamik und StrömungstechnikBraunschweigGermany
  2. 2.University of SouthamptonSouthamptonUK

Personalised recommendations