Global Stability Analysis of Compressible Flow around Swept Wings

  • Christoph J. Mack
  • Peter J. Schmid
  • Jörn Sesterhenn
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 112)


The global linear stability of compressible flow in the leading-edge region of a swept wing is studied using an iterative eigenvalue method. This method was implemented via a Jacobian-free framework where direct numerical simulations provide computed flow fields as the required input. It has been found that the investigated leading-edge flow is, over a selected range of flow parameters, most unstable to instabilities of the crossflow type. Our results further confirm that convex leading-edge curvature has a stabilizing influence on this flow.


Global Stability Krylov Subspace Global Mode Sweep Angle Hessenberg Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bippes, H.: Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability. Prog. Aero. Sci. 35, 363–412 (1999)CrossRefGoogle Scholar
  2. 2.
    Saric, W.S., Reed, H.L., White, E.B.: Stability and transition of three-dimensional boundary layers. Annu. Rev. Fluid Mech. 35, 413–440 (2003)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Schlichting, H., Gersten, K.: Boundary Layer Theory. Springer, Heidelberg (2000)zbMATHGoogle Scholar
  4. 4.
    Lin, R.S., Malik, M.R.: On the stability of attachment-line boundary layers. Part 2. The effect of leading edge curvature. J. Fluid Mech. 333, 125–137 (1997)zbMATHCrossRefGoogle Scholar
  5. 5.
    Mack, C.J., Schmid, P.J., Sesterhenn, J.L.: Global stability of swept flow around a parabolic body: connecting attachment-line and crossflow modes. J. Fluid Mech. 611, 205–214 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Theofilis, V., Fedorov, A., Obrist, D., Dallmann, U.C.: The extended Görtler-Hämmerlin model for linear instability in the three-dimensional incompressible swept attachment line boundary layer. J. Fluid Mech. 487, 271–313 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Theofilis, V.: Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog. Aero. Sci. 39, 249–315 (2003)CrossRefGoogle Scholar
  8. 8.
    Edwards, W.S., Tuckerman, L.S., Friesner, R.A., Sorensen, D.C.: Krylov Methods for the Incompressible Navier-Stokes Equations. J. Comput. Phys. 110, 82–102 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Sesterhenn, J.: A characteristic-type formulation of the Navier-Stokes equations for high-order upwind schemes. Comput. Fluids 30, 37–67 (2001)zbMATHCrossRefGoogle Scholar
  10. 10.
    Le Duc, A., Sesterhenn, J., Friedrich, R.: Instabilities in compressible attachment-line boundary layers. Phys. Fluids 28, 044102 (2006)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Sorensen, D.C.: Numerical methods for large eigenvalue problems. Acta Numer. 11, 519–584 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Mack, C.J., Schmid, P.J.: A preconditioned Krylov technique for global hydrodynamic stability analysis of large-scale compressible flows. J. Comput. Phys. 3, 541–560 (2010)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Christoph J. Mack
    • 1
    • 2
  • Peter J. Schmid
    • 1
  • Jörn Sesterhenn
    • 2
  1. 1.Laboratoire d’Hydrodynamique (LadHyX)CNRS-École PolytechniquePalaiseau cedexFrance
  2. 2.Department of Numerical Mathematics (LRT1)Universität der Bundeswehr (UniBw)MünchenGermany

Personalised recommendations