Advertisement

Flowfield-Characteristics Generated by DBD Plasma Actuators

  • Jochen Kriegseis
  • Tobias Dehler
  • Sven Grundmann
  • Cameron Tropea
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 112)

Summary

The current study is devoted to investigating velocity fields produced by Dielectric Barrier Discharge (DBD) plasma actuators in quiescent air using a PIV system. The purpose of the study is to determine whether features in the velocity field can be recognized, which already allow direct conclusions about how effective the actuator might be for a particular flow control application. The parameter space investigated in the experiments comprises several electrode sizes, modulation frequencies and actuator voltages. Our interest is focussed at the present time on stabilization of boundary layers or delay of transition. To identify conducive induced velocity fields, we have chosen to examine the proper orthogonal decomposition of the velocity field and show that this representation can have direct physical interpretation of the influence exerted on the boundary layer. Comparing the present results to previous experience with various actuator configurations, we conclude that the following approach is viable and should be persude.

Keywords

Particle Image Velocimetry Proper Orthogonal Decomposition Dielectric Barrier Discharge Proper Orthogonal Decomposition Mode Plasma Actuator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adrian, R.J., Christensen, K.T., Liu, Z.C.: Analysis and interpretation of instantaneous turbulent velocity fields. Exp. Fluids 29, 275–290 (2000)CrossRefGoogle Scholar
  2. 2.
    Aubry, N.: On the Hidden Beauty of the Proper Orthogonal Decomposition. Theoret. Comput. Fluid Dynamics 2, 339–352 (1991)zbMATHCrossRefGoogle Scholar
  3. 3.
    Cordier, L., Bonnet, J.P., Deville, J.: Proper Orthogonal Decomposition: POD. In: Tropea, C., Yarin, A.L., Foss, J.F. (eds.) Springer Handbook of Experimental Fluid Mechanics, pp. 1346–1370. Springer, Heidelberg (2007)Google Scholar
  4. 4.
    Duchmann, A.: Experimentelle Untersuchung der Transitionsbeeinflussung mit Hilfe von Plasma Aktuatoren, Bachelor’s thesis, TU Darmstadt (2007)Google Scholar
  5. 5.
    Enloe, C.L., McLaughlin, T.E., VanDyken, R.D., Kachner, K.D., Jumper, E.J., Corke, T.C., Post, M., Haddad, O.: Mechanisms and Responses of a Single Dielectric Barrier Plasma Actuator: Geometric Effects. AIAA Journal 42, 595–604 (2004)CrossRefGoogle Scholar
  6. 6.
    Forte, M., Jolibois, J., Pons, J., Moreau, E., Touchard, G., Cazalens, M.: Optimization of a Dielectric Barrier Discharge Actuator by Stationary and Non-Stationary Measurements of the Induced Flow Velocity: Application to Airflow Control. Exp. Fluids 43, 917–928 (2007)CrossRefGoogle Scholar
  7. 7.
    Grundmann, S., Tropea, C.: Experimental Transition Delay Using Glow-Discharge Plasma Actuators. Exp. Fluids 42, 653–657 (2007) ISSN: 0723-4864CrossRefGoogle Scholar
  8. 8.
    Grundmann, S., Tropea, C.: Active Cancellation of Artificially Introduced Tollmien Schlichting Waves Using Plasma Actuators. Exp. Fluids 44, 795–806 (2007)CrossRefGoogle Scholar
  9. 9.
    Kriegseis, J., Dehler, T., Gnirß, M., Tropea, C.: Common-Base Proper Orthogonal Decomposition (CPOD) as a Means of Quantitative Data-Comparison. Meas. Sci. Technol. (submitted)Google Scholar
  10. 10.
    Kriegseis, J., Dehler, T., Pawlik, M., Tropea, C.: Pattern-Identification Study of the Flow in Proximity of a Plasma Actuator. In: AIAA-2009-1001, 47th AIAA Aerospace Science Meeting, Orlando, Florida, USA (2009)Google Scholar
  11. 11.
    Meyer, K.E., Pedersen, J.M., Özcan, O.: A Turbulent Jet in Crossflow Analysed with Proper Orthogonal Decomposition. J. Fluid Mech. 583, 199–227 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Moreau, E.: Airflow Control by Non-Thermal Plasma Actuators. J. Phys. D: Appl. Phys. 40, 605–636 (2007)CrossRefGoogle Scholar
  13. 13.
    Patte-Rouland, B., Lalizel, G., Moreau, J., Rouland, E.: Flow Analysis of an Annular Jet by Particle Image Velocimetry and Proper Orthogonal Decomposition. Meas. Sci. Technol. 12, 1404–1412 (2001)CrossRefGoogle Scholar
  14. 14.
    Quadros, R., Grundmann, S., Tropea, C.: Numerical Simulations of the Transition Delay using Plasma Actuators. In: 7th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements - ETMM7, Limassol, Cyprus (2008)Google Scholar
  15. 15.
    Ramakumar, K., Jacob, J.D.: Low Pressure Turbine Blade Separation Control Using Plasma Actuators. In: AIAA-2007-371, 45th AIAA Aerospace Science Meeting and Exhibit, Reno, Nevada, USA (2007)Google Scholar
  16. 16.
    Roth, J.R., Sherman, D., Wilkinson, S.P.: Boundary Layer Flow Control with a One Atmosphere Uniform Glow Discharge Surface Plasma. In: AIAA-1998-0328, 36th AIAA Aerospace Science Meeting and Exhibit, Reno, Nevada, USA (1998)Google Scholar
  17. 17.
    Roth, J.R., Dai, X.: Optimization of the Aerodynamic Plasma Actuator as an Electrohydrodynamic (EHD) Electrical Device. In: AIAA-2006-1203, 44th AIAA Aerospace Science Meeting and Exhibit, Reno, Nevada, USA (2006)Google Scholar
  18. 18.
    Velkoff, H.R., Ketcham, J.: Effect of an Electrostatic Field on Boundary-Layer Transition. AIAA Journal 6, 1381–1383 (1968)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jochen Kriegseis
    • 1
  • Tobias Dehler
    • 1
  • Sven Grundmann
    • 2
  • Cameron Tropea
    • 1
    • 2
  1. 1.Fachgebiet Strömungslehre und AerodynamikTechnische Universität DarmstadtGriesheimGermany
  2. 2.Center of Smart InterfacesTechnische Universität DarmstadtGriesheimGermany

Personalised recommendations