Numerical Simulation of Upstream Moving Pressure Waves in Transonic Airfoil Flow

  • Viktor Hermes
  • Igor Klioutchnikov
  • Atef Alshabu
  • Herbert Olivier
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 112)


Results from a numerical investigation of the unsteady transonic flow around a supercritical BAC 3-11 airfoil will be presented here. The focus of this paper is the phenomenon of upstream moving pressure waves. The used solver is based on the finite difference discretisation of high order accuracy (N > 5) and explicit time integration. The mechanisms of pressure wave generation, their development and the influences of the inflow parameter like Mach, Reynolds number and angle of attack are investigated in two-dimensional flow simulations. To analyse the three-dimensional effects simulation of the three-dimensional transonic flow is performed for selected inflow conditions and its preliminary results will be presented.


Mach Number Pressure Wave Boundary Layer Separation Pressure History WENO Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alshabu, A., Olivier, H., Klioutchnikov, I.: Investigation of Upstream Moving Pressure Waves on a Supercritical Airfoil. Aerospace Science and Technology 10, 465–473 (2006)CrossRefGoogle Scholar
  2. 2.
    Balsara, D., Shu, C.W.: Monotonicity Preserving Weighted Essentially Non-Oscillatory Schemes with Increasingly High Order of Accuracy. Journal of Computational Physics 160(2), 405–452 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Finke, K.: Stoß schwingungen in schallnahen Strömungen. VDI-Forschungsheft Nr. 580, Düsseldorf (1977)Google Scholar
  4. 4.
    Hermes, V., Klioutchnikov, I., Alshabu, A., Olivier, H.: Investigation of Unsteady Transonic Airfoil Flow. AIAA-Paper 2008 - 0627 (2008)Google Scholar
  5. 5.
    Jiang, G.S., Shu, C.W.: Efficient Implementation of Weighted ENO Schemes. Journal of Computational Physics 126(1), 202–228 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Klioutchnikov, I., Ballmann, J.: DNS of Transitional Transsonic Flow about a Supercritical BAC3-11 Airfoil using High-Order Shock Capturing Schemes. In: DLES VI. ERCOFTAC Series, vol. 10, pp. 737–744. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Lee, B.H.K.: Self-Sustained Shock Oscillations on Airfoils at Transonic Speeds. Progress in Aerospace Sciences 37, 147–196 (2001)CrossRefGoogle Scholar
  8. 8.
    Srulijes, J., Seiler, F.: A Study on Upstream Moving Pressure Waves Induced by Vortex Separation. In: Proceedings of the 16th International Symposium on Shock Tubes and Waves, pp. 621–628. VCH Publishers, Weinheim (1988)Google Scholar
  9. 9.
    Soda, A.: Numerical Investigation of Unsteady Transonic Shock/Boundary-Layer Interaction for Aeronautical Application. DLR-Forschungsberichricht 2007-03 (2007)Google Scholar
  10. 10.
    Tijdeman, H.: Investigation of the Transonic Flow around Oscillating Airfoils. NLR TR 77090, Amsterdam (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Viktor Hermes
    • 1
  • Igor Klioutchnikov
    • 1
  • Atef Alshabu
    • 1
  • Herbert Olivier
    • 1
  1. 1.Shock Wave LaboratoryRWTH Aachen UniversityAachenGermany

Personalised recommendations