Advertisement

An Explicit Space-Time Discontinuous Galerkin Scheme with Local Time-Stepping for Unsteady Flows

  • Christoph Altmann
  • Gregor Gassner
  • Frieder Lörcher
  • Arne Taube
  • Jens Utzmann
  • C. -D. Munz
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 112)

Summary

The objective of our project is the development of high-order methods for the unsteady Euler and Navier Stokes equations. For this, we consider an explicit DG scheme formulated in a space-time context called the Space-Time Expansion DG scheme (STE-DG). Our focus lies on the improvement of two main aspects: Increase of efficiency in the temporal and spatial discretization by giving up the assumption that all grid cells run with the same time step and introducing local time-stepping and the shock capturing property, where we have adopted the artificial viscosity approach as described by Persson and Peraire to our STE-DG scheme. Thus, we try to resolve the shock within a few relatively large grid cells forming a narrow viscous profile by locally adding some amount of artificial viscosity.

Keywords

Grid Cell Discontinuous Galerkin NACA0012 Airfoil Discontinuous Galerkin Scheme WENO Reconstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altmann, C., Gassner, G., Lörcher, F., Taube, A., Munz, C.-D.: An explicit space-time discontinuous Galerkin scheme with local time-stepping for unsteady flows. In: 8th World Congress on Computational Mechanics (WCCM8), 5th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008), Venice, Italy (July 2008)Google Scholar
  2. 2.
    Altmann, C., Taube, A., Gassner, G., Lörcher, F., Munz, C.-D.: Shock detection and limiting strategies for high order discontinuous Galerkin schemes. In: 26th International Symposium on Shock Waves (ISSW 26), Göttingen, Germany (July 2007)Google Scholar
  3. 3.
    Gassner, G., Lörcher, F., Munz, C.-D.: A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes. J. Comput. Phys. 224(2), 1049–1063 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gassner, G., Lörcher, F., Munz, C.-D.: A discontinuous Galerkin scheme based on a space-time expansion II. Viscous flow equations in multi dimensions. J. Sci. Comput. 34(3), 260–286 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of the Euler equations by finite volume methods using Runge–Kutta time-stepping schemes. In: Proc. of the AIAA 14th Fluid and Plasma Dynamic Conference, AIAA-1981-1259, Paolo Alto, California (June 1981)Google Scholar
  6. 6.
    Lörcher, F., Gassner, G., Munz, C.-D.: A discontinuous Galerkin scheme based on a space-time expansion I. Inviscid compressible flow in one space dimension. J. Sci. Comput. 32(2), 175–199 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Lörcher, F., Gassner, G., Munz, C.-D.: An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations. J. Comput. Phys. 227(11), 5649–5670 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Persson, P.-O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: Proc. of the 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2006-1253, Reno, Nevada (January 2006)Google Scholar
  9. 9.
    Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics, 2nd edn. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  10. 10.
    Woodward, P., Colella, P.: The numerical simulation of two–dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Christoph Altmann
    • 1
  • Gregor Gassner
    • 1
  • Frieder Lörcher
    • 1
  • Arne Taube
    • 1
  • Jens Utzmann
    • 1
  • C. -D. Munz
    • 1
  1. 1.IAG - Institut für Aerodynamik und GasdynamikUniversität StuttgartStuttgartGermany

Personalised recommendations