Chimera Simulations of Transported Large–Scale Vortices and Their Interaction with Airfoils

  • Christoph Wolf
  • Axel Raichle
  • Tobias Knopp
  • Dieter Schwamborn
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 112)


A Chimera technique for moving grids is applied to simulate the transport of large-scale vortices convected by a mean velocity field over large distances and their interaction with an airfoil. While keeping the numerical dissipation at a minimum, the Chimera approach allows to resolve the vortex on a local fine grid whereas the unstructured global background grid can be relatively coarse. Having examined the vortex dissipation rate numerically, the interaction of a Rankine-like type vortex with a NACA 0012 airfoil and an ONERA-A airfoil near stall, respectively, is simulated. The interaction can be interpreted as a time-dependent variation in the effective angle of attack. A subsequent computation of a flapping NACA 0012 airfoil turns out to be an insufficient approximation of the vortex-airfoil interaction.


Wake Vortex Numerical Dissipation Vortex Interaction Grid Cell Size Effective Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abate, M.: Gust Boundary Condition for the TAU-Code, Technical Report IB 124–2007/9, DLR, Braunschweig, Germany (November 2007)Google Scholar
  2. 2.
    Fabre, D., Sipp, D., Jacquin, L.: Kelvin Waves and the Singular Modes of the Lamb-Oseen Vortex. Journal of Fluid Mechanics 551, 235–274 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Hariharan, N.: Rotary-Wing Wake Capturing: High-Order Schemes Toward Minimizing Numerical Vortex Dissipation. Journal of Aircraft 39(5), 822–829 (2002)CrossRefGoogle Scholar
  4. 4.
    Holzäpfel, F.: Probabilistic Two-Phase Aircraft Wake-Vortex Model: Furter Development and Assessment. Journal of Aircraft 43(3), 700–708 (2006)CrossRefGoogle Scholar
  5. 5.
    Petersson, N.A.: Hole-Cutting for Three-Dimensional Overlapping Grids. SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics 21(2), 646–665 (1999)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Rung, T., Lübcke, H., Franke, M., Xue, L., Fu, S.: Assessment of Explicit Algebraic Stress Models in Transonic Flow. In: Engineering Turbulence Modeling and Experiments, vol. 4, pp. 659–668. Elsevier, Amsterdam (1999)CrossRefGoogle Scholar
  7. 7.
    Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR Tau-Code: Recent Applications in Research and Industry. In: Wesseling, P., Onate, E., Periaux, J. (eds.) ECCOMAS CFD 2006, Technical University Delft, The Netherlands (2006)Google Scholar
  8. 8.
    Schwarz, T.: Ein blockstrukturiertes Verfahren zur Simulation der Umströmung komplexer Konfigurationen, DLR-Forschungsber. 2005-20, 122 S. (2005) ISSN 1434-8454Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Christoph Wolf
    • 1
  • Axel Raichle
    • 2
  • Tobias Knopp
    • 1
  • Dieter Schwamborn
    • 1
  1. 1.DLR Göttingen, AS-C2A2S2EGöttingenGermany
  2. 2.DLR Göttingen, AS-C2A2S2EBraunschweigGermany

Personalised recommendations