Advertisement

Numerical Simulation of the Elastic and Trimmed Aircraft

  • Andreas Michler
  • Ralf Heinrich
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 112)

Summary

A simulation environment has been developed enabling the computation of the elastic and trimmed aircraft. It consists of a trim algorithm which is coupled with a procedure to account for the interaction between fluid and structure. The trim algorithm is based on a Newton method with a discretized Jacobian. It incorporates the six degreesof- freedom (DoF) flight-mechanics equations and thereby enables to compute different trimmed states. The fluid-structure interaction (FSI) procedure uses a partitioned approach to compute the flow around the configuration in static aeroelastic equilibrium. This simulation environment has been successfully applied to trim a rigid transportaircraft configuration in viscous flow as well as in inviscid flow with rigid and flexible wing.

Keywords

Transport Aircraft Wing Root Commercial Software ANSYS Horizontal Tail Cruise Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Felippa, C., Park, K., Farhat, C.: Partitioned Analysis of Coupled Mechanical Systems. Computer Methods in Applied Mechanics and Engineering 190, 3247–3270 (2001)zbMATHCrossRefGoogle Scholar
  2. 2.
    Heath, M.T.: Scientific Computing: An Introductory Survey, 2nd edn. McGraw-Hill, New York (2002)Google Scholar
  3. 3.
    Heinrich, R., Wild, J., Streit, T., Nagel, B.: Steady Fluid-Structure Coupling for Transport Aircraft. Deutscher Luft- und Raumfahrtkongress, Braunschweig (2006)Google Scholar
  4. 4.
    Langtangen, H.P.: Python Scripting for Computational Science, 2nd edn. Texts in Computational Science and Engineering. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  5. 5.
    Madrane, A., Raichle, A., Stürmer, A.: Parallel Implementation of a Dynamic Overset Unstructured Grid Approach. In: Neittaanmäki, P., Rossi, T., Majava, K., Pironneau, O. (eds.) Proceedings of the ECCOMAS 2004 ConferenceGoogle Scholar
  6. 6.
    Murman, S.M., Aftosmis, M.J., Berger, M.J.: Simulations of 6-DOF Motion with a Cartesian Method. In: 41st AIAA Aerospace Sciences Meeting, Reno, NV, January 6-9, AIAA-2003-1246Google Scholar
  7. 7.
    Nagel, B.: Berechnung der strukturmechanischen Geometrie von Tragflügeln auf Basis eines aerodynamischen Netzes. Diplomarbeit, DLR-Institut für Faserverbundleichtbau und AdaptronikGoogle Scholar
  8. 8.
    Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-Code: Recent Applications in Research and Industry. In: ECCOMAS CFD 2006, Egmond aan Zee, The Netherlands (2006)Google Scholar
  9. 9.
    Tewari, A.: Atmospheric and Space Flight Dynamics. Birkhäuser, Boston (2007)zbMATHGoogle Scholar
  10. 10.
    ANSYS homepage, http://www.ansys.com/
  11. 11.
    Centaur homepage, http://www.centaursoft.com/
  12. 12.
    CATIA homepage in German language, http://www.3ds.com/de/

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Andreas Michler
    • 1
  • Ralf Heinrich
    • 1
  1. 1.DLRInstitute of Aerodynamics and Flow TechnologyBraunschweigGermany

Personalised recommendations