Advertisement

Automatic Transition Prediction for Three-Dimensional Aircraft Configurations Using the DLR TAU Code

  • A. Krumbein
  • N. Krimmelbein
  • G. Schrauf
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 112)

Summary

A Reynolds-averaged Navier-Stokes solver, a laminar boundary-layer code and a fully automated local, linear stability code for the prediction of Tollmien-Schlichting and cross-flow instabilities were coupled for the automatic prediction of laminar-turbulent transition on general aircraft configurations during the ongoing flow computation. The procedure is applied to a three-dimensional wing-body configuration and the sensitivity of the coupled system to a variety of coupling parameters is investigated.

Keywords

Computational Fluid Dynamic Transition Line Transition Prediction Force Coefficient Convergence History 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    COCO – A Program to compute Velocity and Temperature Profiles for Local and Nonlocal Stability Analysis of Compressible, Conical Boundary Layers with Suction, ZARM Technik Report (November 1998)Google Scholar
  2. 2.
    Edwards, J.R., Chandra, S.: Comparison of Eddy Viscosity–Transport Turbulence Models for Three-Dimensional, Shock-Separated Flowfields. AIAA Journal 34(4), 756–763 (1996)CrossRefGoogle Scholar
  3. 3.
    Krimmelbein, N., Radespiel, R., Nebel, C.: Numerical Aspects of Transition Prediction for Three-Dimensional Configurations. AIAA-2005-4764Google Scholar
  4. 4.
    Krimmelbein, N., Radespiel, R.: Transition prediction for three-dimensional flows using parallel computation. Computers & Fluids 38, 121–136 (2009)CrossRefGoogle Scholar
  5. 5.
    Kroll, N., Rossow, C.-C., Schwamborn, D., Becker, K., Heller, G.: MEGAFLOW - A Numerical Flow Simulation Tool For Transport Aircraft Design. In: ICAS Congress 2002 [CD-Rom], ICAS, Toronto, Canada, pp. 1.105.1–1.105.20 (2002)Google Scholar
  6. 6.
    Krumbein, A.: Automatic Transition Prediction and Application to Three-Dimensional High-Lift Configurations. Journal of Aircraft 44(3), 918–926 (2007), doi:10.2514/1.25528, also: AIAA-2006-3164 (June 2006)Google Scholar
  7. 7.
    Krumbein, A., Krimmelbein, N., Schrauf, G.: Automatic Transition Prediction in a Hybrid CFD Code – Part 1: Methodology and Sensitivities” and “Automatic Transition Prediction in a Hybrid CFD Code – Part 2: Practical Application. both accepted at Journal of Aircraft, also: AIAA-2007-4284 and AIAA-2008-413Google Scholar
  8. 8.
    Krumbein, A., Krimmelbein, N.: Navier-Stokes High-Lift Airfoil Computations with Automatic Transition Prediction using the DLR TAU Code. In: New Results in Numerical and Experimental Fluid Mechanics VI, Contributions to the 15th STAB/DGLR Symposium, Darmstadt, Germany. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 96, pp. 210–218. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Nebel, C., Radespiel, R., Wolf, T.: Transition Prediction for 3D Flows Using a Reynolds-Averaged Navier-Stokes Code and N-Factor Methods. AIAA-2003-3593Google Scholar
  10. 10.
    Rozendaal, R.A.: Natural Laminar Flow Flight Experiments on a Swept Wing Business Jet-Boundary-Layer Stability Analysis, NASA CP 3975 (March 1986)Google Scholar
  11. 11.
    Schrauf, G.: Large-Scale Laminar-Flow Tests Evaluated with Linear Stability Theory. Journal of Aircraft 41(2), 224–230 (2004)CrossRefGoogle Scholar
  12. 12.
    Schrauf, G.: LILO 2.1 User’s Guide and Tutorial, Bremen, Germany, GSSC Technical Report 6, originally issued September 2004, modified for Version 2.1 July 2006Google Scholar
  13. 13.
    Schwamborn, D., Gerhold, T., Hannemann, V.: On the Validation of the DLR-TAU Code. In: New Results in Numerical and Experimental Fluid Mechanics II. NNFM, vol. 72, pp. 426–433. Vieweg Verlag, Braunschweig (1999)Google Scholar
  14. 14.
    Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-Code: Recent Applications in Research and Industry. In: European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2006, Egmond aan Zee, The Netherlands, 5 – 8 September. ECCOMAS CFD 2006 - CD-Rom Proceedings, TU Delft, The Netherlands (2006)Google Scholar
  15. 15.
    Smith, A.M.O., Gamberoni, N.: Transition, Pressure Gradient and Stability Theory. Douglas Aircraft Company, Long Beach (1956)Google Scholar
  16. 16.
    Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. La Recherche Aérospatiale 1, 5–21 (1994)Google Scholar
  17. 17.
    Stock, H.W.: Infinite Swept Wing RANS Computations with eN Transition Prediction – Feasibility Study, Rept. IB 124-2003/12, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Braunschweig, Germany (August 2002)Google Scholar
  18. 18.
    van Ingen, J.L.: A suggested Semi-Empirical Method for the Calculation of the Boundary Layer Transition Region, University of Delft, Dept. of Aerospace Engineering, Delft, The Netherlands, Rep. VTH-74 (1956)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • A. Krumbein
    • 1
  • N. Krimmelbein
    • 2
  • G. Schrauf
    • 3
  1. 1.Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)Institute of Aerodynamics and Flow Technology (AS), C2A2S2EGöttingenGermany
  2. 2.Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)Institute of Aerodynamics and Flow Technology (AS), C2A2S2EBraunschweigGermany
  3. 3.AirbusBremenGerman

Personalised recommendations