Skip to main content

The Influence of the Length Scale Equation on the Simulation Results of Aerodynamic Flows Using Differential Reynolds Stress Models

  • Conference paper
New Results in Numerical and Experimental Fluid Mechanics VII

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 112))

Summary

The Stress-ω differential Reynolds stress model with the ω-equations of Wilcox, Kok and Menter and the SSG/LRR-ω, being always linked to the Menter ω-equation, have been applied to the transonic flow around the RAE 2822 airfoil and the ONERA M6 wing. Comparison with the Wilcox kω model shows the influence of replacing the k-equation and the Boussinesq hypothesis by the modeled Reynolds stress transport equation. Particularly for the M6 wing differential Reynolds stress models appear to be generally superior. Nevertheless the comparison between the different model variants reveals, that details of the length scale equation can have a larger influence than details of the re-distribution term modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barche, J. (ed.): Experimental Data Base for Computer Program Assessment, AGARD-Report AGARD-AR-138 (1979)

    Google Scholar 

  2. Eisfeld, B.: Numerical simulation of aerodynamic problems with a Reynolds stress model. In: Rath, H.-J., Holze, C., Heinemannm, H.-J., Henke, R., Hönlinger, H. (eds.) New Results in Numerical and Experimental Fluid Mechanics V, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 92, pp. 413–419 (2006)

    Google Scholar 

  3. Eisfeld, B.: Numerical Simulation of Aerodynamic Problems with the SSG/LRR-ω Reynolds Stress Model Using the Unstructured TAU Code. In: Tropea, C., Jakrilić, S., Heinemannm, H.-J., Henke, R., Hönlinger, H. (eds.) New Results in Numerical and Experimental Fluid Mechanics VI, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 96, pp. 356–363 (2007)

    Google Scholar 

  4. Eisfeld, B., Brodersen, O.: Advanced Turbulence Modelling and Stress Analysis for the DLR-F6 Configuration. AIAA-Paper 2005-4727 (2005)

    Google Scholar 

  5. Haase, W., Aupoix, B., Bunge, U., Schwamborn, D. (eds.): FLOMANIA – A European Initiative on Flow Physics Modelling. Notes on Numerical Fluid Mechanics, vol. 94. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  6. Kok, J.C.: Resolving the Dependence on Freestream Values for the k − ω Turbulence Model. AIAA Journal 38(7), 1292–1295 (2000)

    Article  Google Scholar 

  7. Launder, B.E., Reece, G.J., Rodi, W.: Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics 68, 537–566 (1975)

    Article  MATH  Google Scholar 

  8. Menter, F.R.: Influence of Freestream Values on k-ω Turbulence Model Predictions. AIAA Journal 30(6), 1657–1659 (1992)

    Article  Google Scholar 

  9. Menter, F.R.: Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal 32, 1598–1605 (1994)

    Article  Google Scholar 

  10. Spalart, P.R., Allmaras, S.R.: A One-Equation Turbulence Model for Aerodynamic Flows. AIAA-Paper, 92-439 (1992)

    Google Scholar 

  11. Speziale, C.G., Sarkar, S., Gatski, T.B.: Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach. Journal of Fluid Mechanics 227, 245–272 (1991)

    Article  MATH  Google Scholar 

  12. Wilcox, D.C.: Reassessment of the Scale Determining Equation for Advanced Turbulence Models. AIAA Journal 26, 1299–1310 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wilcox, D.C.: Turbulence Modeling for CFD, 2nd edn., DCW Industries, La Cañada, USA (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eisfeld, B. (2010). The Influence of the Length Scale Equation on the Simulation Results of Aerodynamic Flows Using Differential Reynolds Stress Models. In: Dillmann, A., Heller, G., Klaas, M., Kreplin, HP., Nitsche, W., Schröder, W. (eds) New Results in Numerical and Experimental Fluid Mechanics VII. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14243-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14243-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14242-0

  • Online ISBN: 978-3-642-14243-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics