Skip to main content

Geophysical Surveys and Data Analysis

  • Chapter
  • First Online:
Exploration of Gas Hydrates

Abstract

Gas hydrates occur worldwide in marine sediments and can play a major role in contributing world’s energy requirements. The identification and assessment of gas hydrate volume can be done by different geophysical techniques including various types of seismic surveys, like (2D/3D conventional, ocean bottom seismic, vertical seismic profiling, cross-well seismic and multi-component), well logging, and control source electromagnetic surveys. This chapter provides a brief of various survey designs and optimal survey parameters for gas hydrate exploration. Reflection seismic profiles are useful to construct the compressional velocity (VP) model for hydrate bearing formations and to explore its possible lateral variation and thereby provide possible relevant interpretations in terms of the geology/tectonics of the subsurface earth. Ocean bottom seismic surveys are the key to explore deeper structures and to build the shear velocity model for hydrates. The results of various gas hydrate models together with the field data reveals that seismic methods are able to detect the lower stratigraphic bound of the hydrates as there is no seismic reflection from upper bound and there is no seismic signature within the hydrate stability zone. Another technique for hydrate detection includes well logging (electrical resistivity, gamma ray etc.) which, provide point measurements and provide no information into the lateral distribution of hydrates. Electromagnetic methods for hydrate detection are also feasible but require more field attempts and laboratory studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfaraj, M., 1993, Transformation to zero offset for mode-converted waves: PhD Thesis, Colorado School of Mines, Colorado.

    Google Scholar 

  • Bangs et al, 1993, Brandsberg-Dahl et al. 2007 and Rajput et al. 2003; have been cited in the text, remaining others have been deleted.

    Google Scholar 

  • Bangs, N. L., Sawyer, D. S., and Golovchenko, X., 1993, Free gas at the base of the gas hydrate zone in the vicinity of the Chile Triple Junction: Geology, 21, 905–908.

    Article  Google Scholar 

  • Berg, E., Svenning, B., Martin, J., 1994, SUMIC: Multicomponent sea-bottom seismic surveying in the North Sea – data interpretation and application. 64th Annual International Meeting of the Society of Exploration Geophysicists, Expanded Abstracts, 477–480.

    Google Scholar 

  • Bessonova, E. N., Fishman, V. M., Ryaboyi, V. Z., and Stinikova, G. A., 1974, The Tau method for inversion of travel times-I. Deep seismic sounding data: Geophysical Journal of The Royal Astronomical Society, 36, 377–398.

    Article  Google Scholar 

  • Bialas, J., and Flueh, E. R., 1999, Ocean bottom seismometers: Sea Technology, 40(4), 41–46.

    Google Scholar 

  • Boswell, R., Hunter, R., Collett, T., Digert, S.,Hancock, S., Weeks, M., and Mount Elbert Science Team, 2008, Investigation of gas hydrate-bearing sandstone reservoirs at the “Mount Elbert” Stratigraphic test well, Milne Point, Alaska: Proceedings of the 6th International Conference on Gas Hydrates, Vancouver, BC, Canada, July 6–10.

    Google Scholar 

  • Brandsberg-Dahl, S., Hornby, B., and Xiao, X., 2007, Migration of surface seismic data with VSP Green's functions: The Leading Edge, 26, 778–780.

    Article  Google Scholar 

  • Brown, L.T., T.L. Davis, and M. Batzle, 2002, Integration of rock physics, reservoir simulation, and timelapse seismic data for reservoir characterization at Weyburn Field, Saskatchewan Society of Exploration Geophysicists. SEG Expanded Abstracts 21, pp. 1708–1711

    Google Scholar 

  • Caldwell, J., 1999, Marine multicomponent seismology: The Leading Edge, 11, 1274–1282.

    Article  Google Scholar 

  • Carcione, J. M., and Tinivella, U., 2000, Bottom simulating reflectors: seismic velocities and AVO effects: Geophysics, 65(1), 54–67

    Article  Google Scholar 

  • Castagna, J. P., Batzle, M. L., and Eastwood, R. L., 1985, Relationship between compressional-wave and shear wave velocities in elastic silicate rocks: Geophysics, 50, 571–581.

    Article  Google Scholar 

  • Castagna, J. P., Batzle, M. L., Tubman, K. M., Gaiser, J. E., and Burnett, M. D., 1993, Offset-dependent reflectivity – theory and practice of AVO analysis. In: Castagna, J.P., Backus, M.M. (Eds.), Investigations in Geophysics. SEG Publication, USA, pp. 115–135.

    Google Scholar 

  • Chave, A. D., Constable, S. C., and Edwards, R. N., 1991. Electrical exploration methods for the seafloor, in Electromagnetic Methods in Applied Geophysics, edited by M. Nabighian, chap. 1, pp. 931– 966, Soc. of Explor. Geophys., Tulsa, Okla.

  • Cheesman, S., Edwards, R., and Chave, A., 1986, On the theory of sea-floor conductivity mapping using transient electromagnetic systems: Geophysics, 52(2), 204–217.

    Article  Google Scholar 

  • Christeson, G. L., McIntosh, K. D., Shipley, T. H., 2000, Seismic attenuation in the Costa Rica margin wedge: amplitude modelling of ocean bottom hydrophone data: Earth and Planetary Science Letters, 179, 391–405.

    Article  Google Scholar 

  • Collett, T. S., 1993, Natural gas hydrates of the Prudhoe Bay and Kuparuk River area, North Slope, Alaska: American Association of Petroleum Geologists Bulletin, 77(5), 793–812.

    Google Scholar 

  • Collett, T. S., et al., 2010, Permafrost associated natural gas hydrate occurrences on the Alaska North Slope: Marine and Petroleum Geology, doi:10.1016/j.marpetgeo.2009.12.001.

    Google Scholar 

  • Constable, S., 2006, Marine electromagnetic methods – A new tool for offshore exploration: The Leading Edge, 25(4), 438–444.

    Article  Google Scholar 

  • Constable, S., and Cox, C. S., 1996, Marine controlled-source electromagnetic sounding 2. The PEGASUS experiment: Journal of Geophysical Research, 101(B3), 5519–5530.

    Article  Google Scholar 

  • Cox, C., Constable, S., and Chave, A., 1986, Controlled-source electromagnetic sounding of the oceanic lithosphere: Nature, 320(6), 52–54.

    Article  Google Scholar 

  • Dai, J.C., Snyder Fred, Gillespie, D., Koesoemadinata, A., Dutta, N., 2008, Exploration for gas hydrates in the deepwater Northern Gulf of Mexico: part I. A seismic approach based on geologic model, inversion, and rock physics principles. Marine and Petroleum Geology, 25, 830–44.

    Google Scholar 

  • Digranes, P., Mjelde, R., Kodaria, S., Shimamura, H., Kanasawa, T., Shiobara, H., and Berg, E. W., 1996, Modelling shear waves in OBS data from the Voring Basin (northern Norway) by 2D ray tracing. Pure and Applied Geophysics, 147(4), 611–629.

    Article  Google Scholar 

  • Dillon, W. P., Lee, M. W., and Coleman, D. F., 1994, Identification of marine hydrates in situ and their distribution off the Atlantic Coast of the United States: Annals of the New York Academy of Sciences, 715, 364–380.

    Article  Google Scholar 

  • Dix, C. H., 1955, Seismic velocities from surface measurements: Geophysics, 20, 68–86.

    Article  Google Scholar 

  • Domenico, S. N., 1977, Effect of brine-gas mixture on velocity in an unconsolidated sand reservoir: Geophysics, 42, 1339–1368.

    Article  Google Scholar 

  • Dunbar, J., 2008, Electrical resistivity investigation of gas hydrate distribution in Mississippi Canyon Block 118, Gulf of Mexico. De-fc26-06nt42959, DOE/NETL Methane Hydrate Projects.

    Google Scholar 

  • Edwards, R. N., 1997, On the resource evaluation of marine gas hydrate deposits using sea-floor transcient electric dipole-dipole methods: Geophysics, 62(1), 63–74.

    Article  Google Scholar 

  • Edwards, R. N., and Chave, A. D., 1986, A transient electric dipole-dipole method for mapping the conductivity of the sea floor: Geophysics, 51(4), 984–987.

    Article  Google Scholar 

  • Eidesmo, T., Ellingsrud, S., MacGregor, L. M., Constable, S., Sinha, M. C., Johansen, S., Kong, F. N., and Westerdahl, H., 2002, Sea bed logging (SBL), a new method for remote and direct identification of hydrocarbon filled layers in deepwater areas: First Break, 20, 144–152.

    Google Scholar 

  • Ellingsrud, S., Eidesmo, T., Johansen, S., Sinha, M., MacGregor, L., and Constable, S., 2002, Remote sensing of hydrocarbon layers by seabed logging (SBL): Results from a cruise offshore Angola: The Leading Edge, 21(10), 972–982.

    Article  Google Scholar 

  • Evans, R. L., 2007, Using CSEM techniques to map the shallow section of seafloor: From coastline to the edges of the continental slope: Geophysics, 72(2), WA105–WA116.

    Article  Google Scholar 

  • Evans, R., Constable, S., Sinha, M., and Unsworth, M., 1994, On the electrical nature of the axial melt zone at 13o N on the East Pacific Rise: Journal of Geophysical Research, 99, 577–588.

    Article  Google Scholar 

  • Flueh, E. R., Klaeschen, D., and Bialas, J., 2002, Options for multi-component seismic data acquisition in deep water: First Break, 20(12), 764–769.

    Google Scholar 

  • Gaiser, J. E., 1997, 3-D converted shear-wave rotation with layer stripping: Western Atlas Internat. Inc., Houston, Tex., U.S. Patent Number 5,610,875.

    Google Scholar 

  • Gaiser, J. E., 1998, Method for improving the coupling response of a water-bottom seismic sensor: Western Atlas Internat. Inc., Houston, Tex., U.S. Patent Number 5,724,307.

    Google Scholar 

  • Gaiser, J. E., 1999, Applications for vector coordinate systems of 3-D converted-wave data. The Leading Edge, 18, 1290.

    Google Scholar 

  • Gaiser, J., Moldoveanu, N., Macbeth, C., Michelena, R., and Spitz, S., 2001, Multicomponent technology: the players, problems, applications, and trends: summary of the workshop sessions: The Leading Edge, 20(9), 1042–1047.

    Article  Google Scholar 

  • Goto, T.-N., Kasaya, T., Machiyama, H., Takagi, R., Matsumoto, R., Okuda, Y., Satoh, M., Watanabe, T., Seama, N., Mikada, H., Sanada, Y., and Kinoshita, M., 2008, A marine deep-towed DC resistivity survey in a methane hydrate area, Japan Sea. Exploration: Geophysics, 39, 52–59.

    Google Scholar 

  • Guerin, G., and Goldberg, D., 2002, Sonic waveform attenuation in the gas hydrate-bearing sediments from the Mallik 2L-38 research well, Mackenzie Delta, Canada: Journal of Geophysical Research, 107, 2088.

    Article  Google Scholar 

  • Harris, J. M., Nokn-Hoeksema, R. C., Langan, R. T., Van Schaack, M., Lazarator, S. K., and Rector, J. W., III., 1995, High resolution imaging of a west Texas carbonate reservoir: Pan 1 – Project summary and interpretation: Geophysics, 60(3), 667–681.

    Article  Google Scholar 

  • Hesthammer, J., and Boulaenko, M., 2005, The offshore EM challenge: First Break, 23, 59–66.

    Google Scholar 

  • Hirahara, K., 1980, Three-dimensional P-wave velocity distribution in southwestern Japan. Annual Meeting of the Seismological Society of Japan, no. 2.

    Google Scholar 

  • Holbrook, W. S., 2001, Seismic studies of the Blake Ridge: Implications for hydrate distribution, methane expulsion, and free gas dynamics. In: Paull, C. K., and Dillon, W. P. (Eds.), Natural Gas Hydrates, Occurrence, Distribution, and Detection. American Geophysical Union, 124, 235–256.

    Google Scholar 

  • Hornby, B. E., and D. Herron, 2007, Introduction to this special session: Borehole geophysics/VSP: The Leading Edge, 26, 731.

    Article  Google Scholar 

  • Huffman, A. R., and Castagna, J. P., 2001, Petrophysical basis for shallow-water flow prediction using multicomponent seismic data: The Leading Edge, 20(9), 1030–1035.

    Article  Google Scholar 

  • Hyndman, R. D., and Spence, G. D., 1992, A seismic study of methane hydrate marine bottom simulating reflectors: Journal of Geophysical Research, 97, 6683–6698.

    Article  Google Scholar 

  • Hyndman, R. D., Yuan, T., and Moran, K., 1999, The concentration of deep sea gas hydrates from downhole electrical resistivity logs and laboratory data: Earth and Planetary Science Letters, 172, 167–177.

    Article  Google Scholar 

  • Inks, T. L., and Agena, W. F., 2008, Successful gas hydrate prospecting using 3D seismic-a case study for the Mt. Elbert prospect, Milne Point, North Slope Alaska: SEG expanded abstract, 27, 473–477.

    Google Scholar 

  • Jarchow, C.M., Catchings, R.D. and Lutter, W.J., 1994. Large explosive source, wide recording aperture, seismic profiling on the Columbia Plateau, Washington. Geophysics, 59, 259–271.

    Google Scholar 

  • Katzman, R., Holbrook, W.S., and Paull, C.K., 1994, A combined vertical incidence and wide-angle seismic study of a gas hydrate zone, Blake Outer Ridge: Journal of Geophysical Research, 99, 17975–17995.

    Article  Google Scholar 

  • Kim, S. D., Nagihara, S., and Nakamura, Y., 2000, P- and S-wave velocity structures of the Sigbee abyssal plain of the Gulf of Mexico from ocean bottom seismometer data: Gulf Coast Association of Geological Societies (GCAGS) Transactions, 50, 475–484.

    Google Scholar 

  • Kopp, H., 2002, BSR occurrence along the Sunda margin: evidence from seismic data: Earth and Planetary Science Letters, 197, 225–235.

    Article  Google Scholar 

  • Kumar, D., Dash, R., and Dewangan, P., 2009, Methods of gas hydrate concentration estimation with field examples: Geohorizons, 76–86

    Google Scholar 

  • Kumar, D., Sen, M. K., and Bangs, N. L., 2005, Estimation of gas-hydrate saturation using multicomponent seismic data: SEG Expanded Abstracts 24, 1542; doi:10.1190/1.2147985

    Google Scholar 

  • Kumar, D., Sen, M. K., Bangs, N. L., 2007, Gas hydrate concentration and characteristics within Hydrate Ridge inferred from multicomponent seismic reflection data. J Geophys Res, 112, B12306. doi: 10.1029/2007JB004993.

    Google Scholar 

  • Kumar, D., 2005, Analysis of multicomponent seismic data from the hydrate ridge, offshore Oregon: PhD thesis, The University of Texas, Austin.

    Google Scholar 

  • Kvenvolden, K. A., 1988, Methane hydrate – a major reservoir of carbon in the shallow geosphere?: Chemical Geology, 71, 41–51.

    Article  Google Scholar 

  • Lee, H., Lee, J.-W., Kim, D.Y., Park, J., Seo, Y.-T., Zeng, H., Moudrakovskr, I.L., Ratcliffe, C.I., and Ripmeester, J.A., 2005, Tuning clathrate hydrates for hydrogen storage. Nature, 434, 743–746.

    Google Scholar 

  • Li, X. Y., and Yuan, L, 1999, Compiling defeasible networks to general logic programs: Artificial Intelligence, 113(1–2), 247–268.

    Google Scholar 

  • Li, X., Kind, R., Priestley, K., Sobolev, S. V., Tilmann, F., Yuan, X., and Weber, M. 1999, Mapping the Hawaiian Plume Conduit with Converted Seismic Waves: AGU 1999 Fall Meeting (San Francisco, USA 1999).

    Google Scholar 

  • Lines, L. R., Miller, M., Tan, H., Chambers, R., and Treitel, S., 1993, Integrated interpretation of borehole and crosswell data from a west Texas field: The Leading Edge, 12, 13–16.

    Article  Google Scholar 

  • MacGregor, L., Constable, S., and Sinha, M., 1998, The ramesses experiment iii: Controlled source electromagnetic sounding of the reykjanes ridge at 57o45’n: Geophysics Journal International, 135, 772–789.

    Article  Google Scholar 

  • MacKay, M. E., 1995, Structural variation and landward vergence at the toe of the Oregon accretionary prism: Tectonics, 14, 1309–1320.

    Article  Google Scholar 

  • MacLeod, M. K., 1982, Gas hydrates in ocean bottom sediments. AAPG Bulletin, 6, 2649–2662.

    Google Scholar 

  • Mikhailov, O., Johnson, J., Shoshitaishvili, E., Frasier, C., 2001, Practical approach to joint imaging of multicomponent data: The Leading Edge, 20(9), 1016–1021.

    Article  Google Scholar 

  • Milkov, A., et al., 2004, Co-existence of gas hydrate, free gas, and brine within the regional gas hydrate stability zone at Hydrate Ridge (Oregon margin): evidence from prolonged degassing of a pressurized core: Earth and Planetary Science Letters, 222, 829–843.

    Article  Google Scholar 

  • Miller, R. D., Hunter, J. A., Doll, W. E., Carr, B. J., Burns, R. A., Good, R. L., Laflen, D. R., and Douma, M., 2000, Imaging permafrost with shallow P- and S-wave reflections: SEG Expanded Abstracts, 19, 1339.

    Article  Google Scholar 

  • Peacher, I. A., Milkereit, B., Sakai, A., Sen, M. K., Bangs, N. L., Huang, J. -W., 2010, Vertical Seismic Profiles through Gas-Hydrate-Bearing Sediments (In Press with SEG).

    Google Scholar 

  • Pecher, I. A., Holbrook, W. S., Stephen, R. A., Hoskins, H., Lizarralde, D., Hutchinson, D. R., and Wood, W. T., 1997, Offset-vertical seismic profiling for marine gas hydrate exploration – is it a suitable technique? First results from ODP Leg 164, Proc. 29th Offshore Technology Conference, 193–200.

    Google Scholar 

  • Pecher, I. A., Holbrook, W. S., Sen, M. K., Lizarralde, D., Wood, W. T., Hutchinson, D. R., Dillon, W. P., Hoskins, H., and Stephen, R. A., 2003, Seismic anisotropy in gas-hydrate and gas-bearing sediments on the Blake Ridge, from a walkaway vertical seismic profile: Geophysical Research Letters, 30, 1733.

    Article  Google Scholar 

  • Rajput, S., 2008, Analysis of Ocean Bottom Seismometer data for gas hydrate studies and subsurface models. Ph.D Dissertation, Kurukshetra University, Kurukshetra.

    Google Scholar 

  • Rajput S., Sen M. K., and Chopra S., 2009 Seismic indicators of gas hydrates and associated free gas, SEG Expanded Abstracts, 28, 2622; doi:10.1190/1.3255391

    Google Scholar 

  • Rajput, S., Rao, P. P., and Thakur, N. K., 2003, Traveltime modeling for the occurrence of the gas hydrates over the continental margins of India, Gas Hydrate Group Report, NGRI (Confidential).

    Google Scholar 

  • Riedel, M., Spence, G. D., Chapman, N. R., and Hyndman, R. D., 2001, Deep-sea gas hydrates on the northern Cascadia margin: The Leading Edge, 20, 87–92.

    Article  Google Scholar 

  • Rajput S, 2008. Analysis of Ocean Bottom Seismometer data for gas hydrate studies and subsurface models. Ph.D Dissertation, Kurukshetra University Kurukshetra.

    Google Scholar 

  • Schwalenberg, K., Willoughby, E., Mir, R., and Edwards, R. N., 2005, Marine gas hydrate electromagnetic signatures in Cascadia and their correlation with seismic blank zones: First break, 23, 57–63.

    Google Scholar 

  • Shipley, T. H. et al., 1979, Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises: AAPG Bulletin, 63, 2204–2213.

    Google Scholar 

  • Shipley, T. H., Houston, M. H., Buffler, R. T., Shaub, F. J., McMillen, K. J., Ladd, J. W., Worzel, J. L., 1979, Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises: AAPG Bulletin, 12, 2204–2213.

    Google Scholar 

  • Stewart, R. R., Gaiser, J. E., Brown, R. J., and Lawton, D. C., 2002, Converted-wave seismic exploration: Methods: Geophysics, 67, 1348–1363.

    Article  Google Scholar 

  • Stoffa, P. L., Buhl, P., Diebold, J. B., and Wenzel, F., 1981, Direct mapping of seismic data to the domain of intercept time and ray parameter– A planewave decomposition: Geophysics, 46, 410–421.

    Article  Google Scholar 

  • Suess, E., et al., 2001, Sea floor methane hydrates at Hydrate Ridge, Cascadia Margin. In: Paull, C. K., and Dillon, W. P. (Eds.), Natural gas hydrates: Occurrence, distribution, and detection: AGU monograph 124, Washington, DC.

    Google Scholar 

  • Tessmer, G., and Behle, A., 1988, Common reflection point data-stacking technique for converted waves: Geophysical Prospecting, 36, 671–688.

    Article  Google Scholar 

  • Tinivella, U., A method or estimating gas hydrate and free gas concentrations in marine sediments: Bollettino di Geofisica Teorica ed Applicata, 40, 19–30.

    Google Scholar 

  • Treitel, S., and Lines, L., 1982, Linear inverse theory and deconvolution: Geophysics, 47, 1153–1159.

    Article  Google Scholar 

  • Vermeer, G. J. O., 2001, Seismic data acquisition developments in the last decade and in the next – a biased view: CSEG Recorder, 26(3), 13–16, June.

    Google Scholar 

  • Walther, C.H.E., 2003, The crustal structure of the Cocos ridge off Costa Rica. Journal of Geophysical Research, 108(B3):2136.

    Article  Google Scholar 

  • Weitemeyer, K. A., 2008, Marine electromagnetic methods for gas hydrate characterization: Scripps Institution of Oceanography, UC San Diego. Retrieved from: http://escholarship.org/uc/item/61x1136v.

  • Weitemeyer, K., Constable, S., and Key, K., 2006a, Marine EM studies of Hydrate Ridge, Oregon, USA-imaging hydrates and the accretionary complex. EM Workshop, El Vendrell, Spain.

    Google Scholar 

  • Weitemeyer, K., Constable, S., Key, K., 2006b, Marine EM techniques for gas-hydrate detection and hazard mitigation: The Leading Edge, 25, 629–632.

    Article  Google Scholar 

  • Weitemeyer, K., Constable, S., Key, K., and Behrens, J., 2006c, First results from a marine controlled-source electromagnetic survey to detect gas hydrates offshore Oregon: Geophysical Research Letters, 33, L03304, doi:10.1029/2005GL024896

    Article  Google Scholar 

  • Xu, H., Dai, J., Snyder, F., and Dutta, N., 2004, Seismic detection and quantification of gas hydrates using rock physics and inversion. In: Taylor, C.E., Kwan, J.T. (Eds.), Advances in Gas Hydrates Research. Kluwer, New York, pp. 117–139.

    Chapter  Google Scholar 

  • Yilmaz, O., 2001, Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data: 2nd Edn., Society of Exploration Geophysicists, Tulsa.

    Google Scholar 

  • Yuan, J., and Edwards, R. N., 2000, The assessment of marine gas hydrates through electronic remote sounding: Hydrate without a BSR? Geophysical Research Letters, 27(16), 2397–2400.

    Article  Google Scholar 

  • Yuan, J., and Edwards, N., 2001. Towed seafloor electromagnetics and assessment of gas hydrate deposits: Geophysical Research Letters, 27(16), 2397–2400.

    Google Scholar 

  • Yuan, T., Hyndman, R. D., Spence, G. D., and Desmons, B., 1996, Seismic velocity increase and deep-sea gas hydrate concentration above a bottom-simulating reflector on the northern Cascadia continental slope: Journal of Geophysical Research, 101, 13655–13671.

    Article  Google Scholar 

  • Zhang, Z., and McMechan, G. A., 2003, Elastic Inversion and interpretation of seismic data from Hydrate Ridge, offshore Oregon, with emphasis on structural controls of the distribution and concentration of gas hydrate and free gas. Masters thesis, Center for Lithospheric Studies, The University of Texas at Dallas, PO Box 830688, Richardson, TX 75083-0688, USA.

    Google Scholar 

  • Zelt, C. A., and Smith, R. B., 1992, Seismic travel time inversion for 2D crystal velocity structure: Geophysical Journal International, 108, 16–74.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh Kumar Thakur .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thakur, N.K., Rajput, S. (2011). Geophysical Surveys and Data Analysis. In: Exploration of Gas Hydrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14234-5_7

Download citation

Publish with us

Policies and ethics