Skip to main content

Abstract

Sorghum is an important cereal and fodder crop, which is adaptable to extreme climatic conditions and soil types. The diverse wild Sorghum species represent valuable germplasm and are an important repository of genes, which can be exploited for crop improvement. They are resistant to a variety of diseases and pests. The 25 species include some that are able to be readily crossed with cultivated sorghum. They will also help us to understand the evolution and adaptations of the Sorghum genus. Wild Sorghum species also allow comparative genomic approaches for understanding the genetic basis of important phenotypes such as plant architecture, flowering, and grain yield. Sorghum species have a diverse array of useful traits that are available for use in sorghum improvement as a food, feed fodder, or industrial crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldrich PR, Doebley J (1992) Restriction fragment variation in the nuclear and chloroplast genomes of cultivated and wild Sorghum bicolor. Theor Appl Genet 85:293–302

    Google Scholar 

  • Ayana A, Bekele E, Bryngelsson T (2004) Genetic variation in wild sorghum (Sorghum Bicolor ssp. verticilliflorum (L.) Moench) germplasm from Ethiopia assessed by random amplified polymorphic DNA (RAPD). Heriditas 132:249–254

    Article  Google Scholar 

  • Baerson SR, Dayan FE, Rimando AM, Nanayakkara NPD, Liu CJ (2008) A functional genomics investigation of allelochemical biosynthesis in Sorghum bicolor root hairs. J Biol Chem 283:3231–3247

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL (2007) Patterns in grass genome evolution. Curr Opin Plant Biol 10:176–181

    Article  PubMed  CAS  Google Scholar 

  • Boivin K, Deu M, Rami JF, Trouche G, Hamon P (1999) Towards a saturated sorghum map using RFLP and AFLP markers. Theor Appl Genet 98:320–328

    Article  CAS  Google Scholar 

  • Bolot S, Abrouk M, Masood-Quraishi U, Stein N, Messing J, Salse J (2009) The ‘inner circle’ of the cereal genomes. Curr Opin Plant Biol 12:119–125

    Article  PubMed  CAS  Google Scholar 

  • Bowers JE, Abbey C, Anderson S, Chang C, Draye X et al (2003) A high-density genetic recombination map of sequence-tagged sites for Sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains grasses. Genetics 165:367–386

    PubMed  CAS  Google Scholar 

  • Bowers JE, Arias MA, Asher R, Avise JA, Ball RT, Brewer GA, Buss RW, Chen AH, Edwards TM, Estill JC et al (2005) Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. Proc Natl Acad Sci USA 102:13206–13211

    Article  PubMed  CAS  Google Scholar 

  • Charles M, Tang HB, Belcram H, Paterson A, Gornicki P, Chalhoub B (2009) Sixty million years in evolution of soft grain trait in grasses: emergence of the softness locus in the common ancestor of Pooideae and Ehrhartoideae, after their divergence from Panicoideae. Mol Biol Evol 26:1651–1661

    Article  PubMed  CAS  Google Scholar 

  • Chittenden LM, Schertz KF, Lin YR, Wing RA, Paterson AH (1994) A detailed RFLP map of Sorghum bicolor x S. propinquum, suitable for high-density mapping, suggests ancestral duplication of Sorghum chromosomes or chromosomal segments. Theor Appl Genet 87:925–933

    Article  CAS  Google Scholar 

  • Cook GD, Andrew MH (1991) The nutrient capital of indigenous Sorghum species and other understory components of Savannas in north-western Australia. Aust Ecol 16:375–384

    Article  Google Scholar 

  • De Oliveira AC, Richter T, Bennetzen JL (1996) Regional and racial specifications in sorghum germplasm assessed with DNA markers. Genome 39:579–587

    Article  PubMed  Google Scholar 

  • Deu M, Hamon P, Chantereau J, Dufour P, D’hont A, Lanaud C (1995) Mitochondrial DNA diversity in wild and cultivated sorghum. Genome 38:635–645

    Article  PubMed  CAS  Google Scholar 

  • Dillon SL, Lawrence PK, Henry RJ (2001) The use of ribosomal ITS to determine phylogenetic relationships within Sorghum. Plant Syst Evol 230:97–110

    Article  CAS  Google Scholar 

  • Dillon SL, Lawrence PK, Henry RJ, Ross L, Price HJ, Johnston JS (2004) Sorghum laxiflorum and S. macrospermum, the Australian native species most closely related to the cultivated S. bicolor based on ITS1 and ndhF sequence analysis of 25 Sorghum species. Plant Syst Evol 249:233–246

    Article  Google Scholar 

  • Dillon SL, Lawrence PK, Henry RJ (2005) The new use of Sorghum bicolor-derived SSR markers to evaluate genetic diversity in 17 Australian Sorghum species. Plant Genet Res 3(1):19–28

    Article  CAS  Google Scholar 

  • Dillon SL, Shapter FM, Henry RJ, Cordeiro G, Izquierdo L, Lee LS (2007) Domestication to crop improvement: genetic resources for Sorghum and Saccharum (Andropogoneae). Ann Bot 100:975–989

    Article  PubMed  Google Scholar 

  • Duodo K, Nunes A, Delgadillo I, Parker M, Mills E, Belton P, Taylor J (2002) Effect of grain structure and cooking on sorghum and maize in vitro protein digestibility. J Cereal Sci 35:161–174

    Article  Google Scholar 

  • Han YJ, Burnette JM, Wessler SR (2009) TARGeT: a web-based pipeline for retrieving and characterizing gene and transposable element families from genomic sequences. Nucleic Acid Res 37:e78

    Article  PubMed  Google Scholar 

  • Hodnett GL, Burson BL, Rooney WL, Dillon SL, Price HJ (2005) Pollen-pistil interactions result in reproductive isolation between Sorghum bicolor and divergent Sorghum species. Crop Sci 45:1403–1409

    Article  Google Scholar 

  • Jardim SN (2007) Comparative genomics of grasses tolerant to aluminum. Genet Mol Res 6:1178–1189

    PubMed  CAS  Google Scholar 

  • Kamala V, Singh SD, Bramel PJ, Manohar Rao D (2002) Sources of resistance to downy mildew in wild and weedy sorghums. Crop Sci 42:1357–1360

    Article  Google Scholar 

  • Kuhlman LC, Burson BL, Klein PE, Klein RR, Stelly D, Price HJ, Rooney WL (2008) Genetic recombination in Sorghum bicolor-S. macrospermum interspecific hybrids. Genome 51:749–756

    Article  PubMed  CAS  Google Scholar 

  • Laurie D, Bennett MD (1989) Genetic variation in Sorghum for the inhibition of maize pollen tube growth. Ann Bot 64:675–681

    Google Scholar 

  • Ma J, Bennetzen JL (2006) Recombination, rearrangement, reshuffling, and divergence in a centromeric region of rice. Proc Natl Acad Sci USA 103:383–388

    Article  PubMed  CAS  Google Scholar 

  • Maqbool SB, Devi P, Sticklen MB (2001) Biotechnology genetic improvement of sorghum (Sorghum bicolor (L.) Moench). In Vitro Cell Dev Biol Plant 37:504–515

    Article  Google Scholar 

  • Menkir A, Bramelcox PJ, Witt PD (1994) Comparisons of methods for introgressing exotic germplasm into adapted sorghum. Theor Appl Genet 89:233–239

    Article  Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Grasses, line up and form a circle. Curr Biol 5:737–739

    Article  PubMed  CAS  Google Scholar 

  • Parr AJ, Bolwell GP (2000) Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J Sci Food Agric 80(7):985–1012

    Article  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101:9903–9908

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Feltus FA, Tang H, Lin L, Wang X (2009a) Comparative genomics of grasses promises a bountiful harvest. Plant Physiol 149:125–131

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H et al (2009b) The Sorghum bicolor genome and the diversification of grasses. Nature. doi: 10.1038/nature07723

  • Pratt LH, Liang C, Shah M, Sun F, Wang HM, Reid SP, Gingle AR, Paterson AH, Wing R, Dean R, Klein R, Nguyen HT, Ma HM, Zhao X, Morishige DT, Mullet JE, Cordonnier-Pratt MM (2005) Sorghum expressed sequence tags identify signature genes for drought, pathogenesis, and skotomorphogenesis from a milestone set of 16, 801 unique transcripts. Plant Physiol 139:869–884

    Article  PubMed  Google Scholar 

  • Price HJ, Dillon SL, Hodnett G, Rooney WL, Ross L, Jonhston JS (2005) Genome evolution in the genus Sorghum (Poaceae). Ann Bot 95:219–227

    Article  PubMed  CAS  Google Scholar 

  • Price HJ, Hodnett GL, Burson BL, Dillon SL, Stelly DM, Rooney WL (2006) Genome dependent interspecific hybridisation of Sorghum bicolor (Poaceae). Crop Sci 46:2617–2622

    Article  CAS  Google Scholar 

  • Rich PJ, Grenier C, Ejeta G (2004) Striga resistance in wild relatives of Sorghum. Crop Sci 44:2221–2229

    Article  Google Scholar 

  • Sarath G, Mitchell RB, Sattler SE, Funnell D, Pedersen JF, Graybosch RA, Vogel KP (2008) Opportunities and roadblocks in utilizing forages and small grains for liquid fuels. J Ind Microbiol Biotechnol 35:343–354

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Antonio BA (2009) Plant genomics: Sorghum in sequence. Nature 457:547–548

    Article  PubMed  CAS  Google Scholar 

  • Schmer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol form switchgrass. Proc Natl Acad Sci USA 105:464–469

    Article  PubMed  CAS  Google Scholar 

  • Shapter FM, Lee LS, Henry RJ (2008) Endosperm and starch granule morphology in wild cereal relatives. Plant Genet Res 6(2):85–97

    Google Scholar 

  • Shapter FM, Eggler P, Lee LS, Henry RJ (2009a) Variation in granule bound starch synthase I (GBSSI) loci amongst Australian wild cereal relatives (Poaceae). J Cereal Sci 49:4–11

    Article  CAS  Google Scholar 

  • Shapter FM, Dawes MP, Lee LS, Henry RJ (2009b) Aleurone and sub-aleurone morphology in native Australian wild cereal relatives. Aust J Bot 57(8):688–696. doi:10.1071/BT07086

    Google Scholar 

  • Sharma HC, Reddy BVS, Dhillon MK, Venkateswaran K, Singh BU, Pampapathy G et al (2005) Host plant resistance to insects in sorghum: present status and need for future research. J Agric Res 1:1–8

    Google Scholar 

  • Shewayrga H, Jordan DR, Godwin ID (2008) Genetic erosion and changes in distribution of sorghum (Sorghum bicolor L. (Moench)) landraces in north-eastern Ethiopia. Plant Genet Resour 6:1–10

    Article  Google Scholar 

  • Spangler R (2003) Taxonomy of Sarga, Sorghum and Vacoparis (Poaceae: Andropogoneae). Aust Syst Bot 16:279–299

    Article  Google Scholar 

  • Thomasson JR (1987) Fossil grasses, 1820-1986 and beyond. In: Soderstron TR, Cambell CS, Barkworth ME (eds) Grass systematics and evolution. Smithsonian Institute Press, Washington, DC, USA, pp 159–167

    Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1996) Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop Sci 36:1337–1344

    Article  CAS  Google Scholar 

  • Wang XY, Gowik U, Tang HB, Bowers JE, Westhoff P, Paterson AH (2009) Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biol 10:R68

    Article  PubMed  Google Scholar 

  • Xin Z, Wang ML, Barkley NA, Burow G, Franks C, Pederson G, Burke J (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:103. doi:10.1186/1471-2229-8-103

  • Yilmaz A, Milton Y, Jr N, Fuentes BG, Souza GM, Janies D, Gray D, Grotewold E (2009) GRASSIUS: a platform for comparative regulatory genomics across the grasses. Plant Physiol 149:171–180

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjanabha Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhattacharya, A., Rice, N., Shapter, F.M., Norton, S.L., Henry, R.J. (2011). Sorghum. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14228-4_9

Download citation

Publish with us

Policies and ethics