Skip to main content

Abstract

The genus Fagopyrum consists of about 19 species, of which only two species, namely F. esculentum and F. tartaricum, are cultivated. The members of the genus fall into two phylogenetic groups, viz. the cymosum group and the urophyllum group. The cymosum group comprises the two cultivated species F. esculentum and F. tartaricum and four wild species, viz. F. cymosum, F. homotropicum, F. lineare, and F. pilus. The urophyllum group, on the other hand, comprises F. urophyllum and the rest of the wild species.

Even though genome size of an organism is considered to be one of the important indicators of phylogenetic relationship and genetic diversity, the underlying causes of genome size variation are not well understood. Significantly, not much information is available on genome size variation within either wild or cultivated species of Fagopyrum. The DNA content of diploid Fagopyrum species varied from l.08 pg in F. lineare to 3.83 pg in F. urophyllum, with the values overlapping almost across the full range of the genus. Wild relatives of buckwheat could be a source of important characters, which could be introgressed into cultivated species by interspecific hybridization. The difference in genome sizes between the parent species determines the success of interspecific hybridization programs.

Present scenario of buckwheat gene pool reveals that there is a need to broaden its germplasm base, which would be helpful in breeding superior varieties. This calls for the determination of genetic divergence and distance in the available buckwheat germplasm before the parents are selected for use in breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albach DC, Greilhuber J (2004) Genome size variation and evolution in Veronica. Ann Bot 94:897–911

    PubMed  CAS  Google Scholar 

  • Arora RK, Engels JM (1992) Buckwheat genetic resources in the Himalayan region: Present status and future thrust. In: Buckwheat Genetic resources in East Asia. International crop Network Series No. 6. IPGRI, Rome, Italy, pp 87–91

    Google Scholar 

  • Arunachalam V (1981) Genetic distances in plant breeding. Indian J Genet 41:226–236

    Google Scholar 

  • Beaulieu JM, Moles AT, Leitch IJ, Bennett MD, Dickie JB, Knight CA (2007) Correlated evolution of genome size and seed mass. New Phytol 173:422–437

    PubMed  Google Scholar 

  • Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Proc R Soc Lond B Biol Sci 181:109–135

    PubMed  CAS  Google Scholar 

  • Bennett MD (1976a) DNA amount, latitude, and crop plant distribution. Environ Exp Bot 16:93–108

    CAS  Google Scholar 

  • Bennett MD (1976b) DNA amount, latitude, and crop plant distribution. In: Jones K, Brandham PE (eds) Current chromosome research. Elsevier, North Holland Biomed, Amsterdam, Netherlands, pp 151–158

    Google Scholar 

  • Bennett MD (1987) Variation in genomic form in plants and its ecological implications. New Phytol 106:177–200

    Google Scholar 

  • Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in angiosperms. Ann Bot 76:113–176

    CAS  Google Scholar 

  • Bernard RL, Cremeens CR, Cooper RL, Collins FI, Krober OA, Athow KL, Laviolette FA, Coble CJ, Nelson RL (1998) Evaluation of the USDA soybean germplasm collection: maturity groups 000–IV (FC 01.547-PI 266.807). USDA-ARS Tech Bull 1844. US Govt Print Office, Washington, DC, USA

    Google Scholar 

  • Berret SCH, Harder LD, Worley AC (1997) The comparative biology of pollination and mating in flowering plants. In: Silvertown J, Franco M, Harper JL (eds) Plant life histories: ecology, phylogeny, and evolution. Cambridge University Press, Cambridge, UK, pp 57–76

    Google Scholar 

  • Betting PK, Widrlechner MP (1995) Genetic markers and plant genetic resource management. Plant Breed Rev 31:11–86

    Google Scholar 

  • Bharali S (2002) Isolation, cloning and molecular analysis of the legumin gene of common buckwheat (Fagopyrum esculentum). North Eastern Hill University, India, Doctoral Thesis

    Google Scholar 

  • Campbell CG (1976) Buckwheat. In: Simmonds NW (ed) Evolution of crop plants. Longman, London, UK, pp 236–237

    Google Scholar 

  • Campbell CG (1997) Buckwheat Fagopyrum esculentum Moench. Promoting the conservation and use of underutilized and neglected crops. IPGRI, Rome, Italy

    Google Scholar 

  • Cavalier-Smith T (1978) Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J Cell Sci 34:247–278

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1980) How selfish is DNA? Nature 285:617–618

    PubMed  CAS  Google Scholar 

  • Chan PK (2003) Inhibition of tumor growth in vitro by the extract of Fagopyrum cymosum Life sciences 72:1851–1858

    CAS  Google Scholar 

  • Chen QF (1999a) A study of resources of Fagopyrum (Polygonaceae) native to China. Bot J Linn Soc 130:53–64

    Google Scholar 

  • Chen QF (1999b) Wide hybridization among Fagopyrum (Polygonaceae) species native to China. Bot J Linn Soc 131:177–185

    Google Scholar 

  • Chen QF (2001b) Discussion on the origin of cultivated buckwheat in genus Fagopyrum (Polygonaceae). In: Proceedings of 8th international symposium on buckwheat, 30 Aug–2 Sep 2001, Chunchon, Korea, pp 206–213

    Google Scholar 

  • Chen QF, Hsam SLK, Zeller FJ (2004) A study of cytology, isozyme, and interspecific hybridization on the big-achene group of buckwheat species (Fagopyrum, Polygonaceae). Crop Sci 44:1511–1518

    Google Scholar 

  • Clegg MT (1993) Chloroplast gene sequences and the study of plant evolution. Proc Natl Acad Sci USA 90:363–367

    PubMed  CAS  Google Scholar 

  • Comeron JM (2001) What controls the length of noncoding DNA? Curr Opin Genet Dev 11:652–659

    PubMed  CAS  Google Scholar 

  • Cullis CA, Cleary W (1986) Rapidly varying DNA sequences in flax. Can J Genet Cytol 28:252–259

    CAS  Google Scholar 

  • Devos K, Brown J, Bennetzen J (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079

    PubMed  CAS  Google Scholar 

  • Ehrendorfer F (1970) Evolutionary patterns and strategies in seed plants. Taxon 19:185–195

    Google Scholar 

  • Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 30:539–563

    Google Scholar 

  • Farooq S, Tahir I (1987) Comparative study of some growth attributes in buckwheat. Fagopyrum 7:9–12

    Google Scholar 

  • Gao Z, Meng FH (1993) Effect of Fagopyrum cymosum rootin in clonal formation of four human tumor cells. Chung Kuo Chung Yao Tsa Chih 18(8):498–500

    PubMed  CAS  Google Scholar 

  • Gizlice Z, Carter TE, Gerig TM Jr, Burton JW (1996) Genetic diversity patterns in North American public soybean cultivars based on coefficient of parentage. Crop Sci 36:753–765

    Google Scholar 

  • Gohil RN, Rather GM (1981) Cytogenetic studies on some members of Polygonaceae of Kashmir buckwheat. J Cytol Genet 16:59–63

    Google Scholar 

  • Goin OB, Goin CJ, Bachmann K (1968) DNA and amphibian life history. Copeia 3:540–552

    Google Scholar 

  • Govindaraju DR, Cullis CA (1991) Modulation of genome size in plants: the influence of breeding systems and neighbourhood size. Evol Trends Plants 5:43–51

    Google Scholar 

  • Gregory TR (2001) Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev 76:65–101

    PubMed  CAS  Google Scholar 

  • Gregory TR (2004) Insertion-deletion biases and the evolution of genome size. Gene 423:15–34

    Google Scholar 

  • Grime JP (1998) Plant classification for ecological purposes: is there a role for genome size? Ann Bot 82:117–120

    Google Scholar 

  • Grime JP, Mowforth MA (1982) Variation in genome size – an ecological interpretation. Nature 299:151–153

    Google Scholar 

  • Gross H (1913) Remarques sur les polygonées de I'asie orientale. Bull Géograph Bot 23:7–32

    Google Scholar 

  • Hammer K (1984) The domestication syndrome. Kulturpflanze 32:11–34 (in Germany)

    Google Scholar 

  • Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding, and genetic resources. Sinauer, Sunderland, MA, pp 43–63

    Google Scholar 

  • Harlan J, de Wet J (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517

    Google Scholar 

  • Hatch MD (1976) Photosynthesis: the path of carbon. In: Bonner J, Varner JE (eds) Plant biochemistry, 3rd edn. Academic, New York, pp 797–844

    Google Scholar 

  • Heo K, Lee KC, Ohnishi O (2001) Pericarp anatomy and character evolution of Fagopyrum (Polygonaceae). In: Proceedings of 8th international symposium on buckwheat, 30 Aug–2 Sep 2001, Chunchon, Korea, pp 256–260

    Google Scholar 

  • Hinegardner R (1976) Evolution of genome size. In: Ayala FJ (ed) Molecular evolution. Sinauer, Sunderland, MA, pp 179–199

    Google Scholar 

  • Huh MK, Huh HW, Ohnishi O (2001) Genetic diversity and ecological characteristics in four buckwheat species. Fagopyrum 18:15–19

    Google Scholar 

  • Hunziker JH, Schaal BA (1983) Isozyme variation in diploid tropical and octoploid subtropical-temperate species of Bulnesia. J Hered 74:358–360

    Google Scholar 

  • Jabornik B, Kump B (1993) Random amplified polymorphic DNA (RAPD) markers in buckwheat. Fagopyrum 13:35–39

    Google Scholar 

  • Jakob SS, Meister A, Blattner FR (2004) The considerable genome size variation of Hordeum species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates. Mol Biol Evol 21:860–869

    PubMed  CAS  Google Scholar 

  • Jockusch EJ (1997) An evolutionary correlate of genome size change in plethodontid salamanders. Proc R Soc Lond B Biol Sci 264:597–605

    CAS  Google Scholar 

  • Johnson LA, Soltis DE (1995) Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Ann Mo Bot Gard 82:149–175

    Google Scholar 

  • Joshi AB, Dhawan NL (1996) Genetic improvement of yield with special reference to self-fertilizing crops. Indian J Genet 26(A):101–113

    Google Scholar 

  • Joshi BD, Paroda RS (1991) Buckwheat in India. National Bureau of Plant Genetic Resources, New Delhi, India

    Google Scholar 

  • Kayashita J, Shimaoka I, Nakajoh M, Kishida N, Kato N (1999) Consumption of buckwheat protein extract retards 7, 12-Dimethylbenz[α] anthracene-induced mammary carcinogenesis in rats. Biosci Biotechnol Biochem 63(10):1837–1839

    PubMed  CAS  Google Scholar 

  • Kellogg EA, Bennetzen JL (2004) The evolution of nuclear genome structure in seed plants. Am J Bot 91:1709–1725

    CAS  Google Scholar 

  • Kishima Y, Ogura K, Mizukami K, Mikami T, Adachi T (1995) Chloroplast DNA analysis in buckwheat species: phylogenetic relationships, origin of reproductive systems and extended inverted repeats. Plant Sci 108:173–179

    CAS  Google Scholar 

  • Knight CA, Ackerly DD (2002) Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecol Lett 5:66–76

    Google Scholar 

  • Komarov VL (1938) Origin of cultivated plants. USSR Lenin Academy of Agricultural Sciences, Leningard, USSR (in Russian)

    Google Scholar 

  • Konishi TY, Yasui Y, Ohnishi O (2005) Original birthplace of cultivated common buckwheat inferred from genetic relationships among cultivated populations and natural populations of wild common buckwheat revealed by AFLP analysis. Genes Genet Syst 80:113–119

    PubMed  CAS  Google Scholar 

  • Kreft I (2001) Buckwheat research, past, present and future perspectives. 20 years of internationally coordinated research. In: Proceedings of 8th international symposium on buckwheat, 30 Aug–2 Sep 2001, Chunchon, Korea, pp 361–366

    Google Scholar 

  • Krotov AS (1960) Historical accounts of buckwheat in Russia. In: Financial research of village economy and peasant in Russia. AHCCCP, Moscow, USSR, pp 414–456, (in Russian)

    Google Scholar 

  • Kump B, Javornik B (2002) Genetic diversity and relationships among cultivated and wild accessions of tartary buckwheat (Fagopyrum tataricum Gaertn.) as revealed by RAPD markers. Genet Resour Crop Evol 49:565–572

    Google Scholar 

  • Labani RM, Elkingtion TT (1987) Nuclear DNA variation in the genus Allium L. (Lilaceae). Heredity 59:119–128

    Google Scholar 

  • Laurie DA, Bennett MD (1985) Nuclear content in the genera Zea and Sorghum. Intergeneric, interspecific and intraspecific variation. Heredity 55:307–313

    Google Scholar 

  • Leitch IJ, Bennett MD (2004) Genome downsizing in polyploidy plants. Biol J Linn Soc 82:651–663

    Google Scholar 

  • Li SQ, Zhang QH (2001) Advances in the development of functional foods from buckwheat. Crit Rev Food Sci Nutr 41:451–464

    PubMed  CAS  Google Scholar 

  • Lumaret R, Barrientos E (1990) Phylogenetic relationships and gene flow between sympatric diploid and tetraploid plants of Dactylis glomerata L. Plant Syst Evol 169:81–96

    Google Scholar 

  • Luthar Z (1992) Phenol classification and tanin content of buckwheat seeds. Fagopyrum 12:36–42

    Google Scholar 

  • Matsui K, Tetsuka T, Hara T (2003) Two independent gene loci controlling non-brittle pedicels in buckwheat. Euphytica 134:203–208

    CAS  Google Scholar 

  • Matsuoka Y, Ohnishi O (1993) Phylogenetic relationships of Fagopyrum species based on chloroplast genome. Jpn J Breed 43(2):203

    Google Scholar 

  • Morgan MT (2001) Transposable element number in mixed mating populations. Genet Res 77:261–275

    PubMed  CAS  Google Scholar 

  • Morris MR (1952) Cytogenetic studies on buckwheat. Genetic and cytological studies of compatibility in relation to heterostyly in common buckwheat, Fagopyrum sagittatum. J Hered 42:85–89

    Google Scholar 

  • Munshi AH, Javeid GN (1986) Systematic studies in Polygonaceae of Kashmir Himalaya. Scientific, Jodhpur, India

    Google Scholar 

  • Murai M, Ohnishi O (1996) Population genetics of cultivated common buckwheat. Fagopyrum esculentum Moench. X. Diffusion routes revealed by RAPD markers. Genes Genet Syst 71(4):211–218

    PubMed  CAS  Google Scholar 

  • Nagano M, All J, Campbell CG, Kawasaki S (2000) Genome size analysis of the genus Fagopyrum. Fagopyrum 17:35–39

    Google Scholar 

  • Nagarajan K, Prasad MN (1980) Studies in genetic diversity in foxtail millet (Setaria italica B.). Madras Agric J 67:28–38

    Google Scholar 

  • Nakai T (1926) A new classification of Linnean Polygonum. Rigakkai 24:289–301 (in Japanese)

    Google Scholar 

  • Neuhaus H, Link G (1987) The chloroplast tRNA LYS(UUU) gene from mustard (Sinapis alba) contains a class II intron potentially coding for a maturase related polypeptide. Curr Genet 11:251–257

    PubMed  CAS  Google Scholar 

  • Nevo E (2001) Evolution of genome–phenome diversity under environmental stress. Proc Natl Acad Sci USA 99:6233–6240

    Google Scholar 

  • Nishiyama K, Lachmann S, Miura M (1991) Electrophoretic property of buckwheat seed protein, In: Proceedings of international colloquium on overcoming breeding barriers by means of plant biotechnology, Miyazaki, Japan, pp 215–222

    Google Scholar 

  • Ohnishi O (1991) Discovery of wild ancestor of common buckwheat. Fagopyrum 11:5–10

    Google Scholar 

  • Ohnishi O (1995) Discovery of new Fagopyrum species and its implication for the study of evolution of Fagopyrum and the origin of cultivated buckwheat. In: Proceedings of 6th international symposium on buckwheat, 24–29 Aug 1995, Shinshu, Japan, pp 175–190

    Google Scholar 

  • Ohnishi O (1998a) Search for the wild ancestor of buckwheat. 1. Description of new Fagopyrum (Polygonaceae) species and their distribution in China and Himalayan hills. Fagopyrum 15:18–28

    Google Scholar 

  • Ohnishi O (1998b) Search for the wild ancestor of buckwheat III. The wild ancestor of cultivated common buckwheat, and of tartary buckwheat. Econ Bot 52:123–133

    Google Scholar 

  • Ohnishi O (2000) Geographical distribution of allozymes in natural populations of wild tartary buckwheat. Fagopyrum 17:29–34

    Google Scholar 

  • Ohnishi O (2002) Wild buckwheat species in the border area of Sichuan, Yunnan and Tibet and allozyme diversity of wild tartary buckwheat in this area. Fagopyrum 19:3–9

    Google Scholar 

  • Ohnishi O (2004) On the origin of cultivated buckwheat. In: Proceedings of 9th international symposium on buckwheat, 18–22 Aug 2004, Prague, Czech Republic, pp 16–21

    Google Scholar 

  • Ohnishi O, Asano N (1999) Genetic diversity of Fagopyrum homotropicum, a wild species related to common buckwheat. Genet Resour Crop Evol 46(4):389–398

    Google Scholar 

  • Ohnishi O, Konishi T (2001) Cultivated and wild buckwheat in eastern Tibet. Fagopyrum 18:3–8

    Google Scholar 

  • Ohnishi O, Matsuoka Y (1996) Search for the wild ancestor of buckwheat II. Taxonomy of Fagopyrum (Polygonaceae) species based on morphology, isozymes and cpDNA variability. Genes Genet Syst 71:383–390

    Google Scholar 

  • Ohnishi O, Nishimoto T (1988) Population genetics of cultivated common buckwheat. Fagopyrum esculentum Moench. V. Further studies on allozyme variability in the Indian and Nepali Himalaya. Jpn J Genet 63:51–66

    Google Scholar 

  • Ohri D (1998) Genome size variation and plant systematics. Ann Bot (Suppl A) 82:75–83

    Google Scholar 

  • Ohsako T, Ohnishi O (1998) New Fagopyrum species revealed by morphological and molecular analyses. Genes Genet Syst 73:85–94

    CAS  Google Scholar 

  • Ohsako T, Ohnishi O (2000) Intra- and interspecific phylogeny of wild Fagopyrum (Polygonaceae) species based on nucleotide sequences of noncoding regions in chloroplast DNA. Am J Bot 87(4):573–582

    PubMed  CAS  Google Scholar 

  • Ohsako T, Ohnishi O (2001) Nucleotide sequence variation of the chloroplast trnK/matK region in the wild Fagopyrum (Polygonaceae) species, F. leptopodum and F. statice. Genes Genet Syst 76:39–46

    PubMed  CAS  Google Scholar 

  • Oomah BD, Mazza C (1996) Flavonoids and antioxidative activities in buckwheat. J Agric Food Chem 44:1746–1750

    CAS  Google Scholar 

  • Padulosi S (1999a) Criteria for priority setting in initiatives dealing with underutilized crops in Europe. In: Gass T, Frese L, Begemann F, Lipman E (compilers) Implementation of the global plan of action in Europe – conservation and sustainable utilization of plant genetic resources for food and agriculture. Proceedings of European Symposium, 30 June–3 July 1998, Braunschweig, Germany, International Plant Genetic Resources Institute, Rome, Italy

    Google Scholar 

  • Park SS, Ohba H (2004) Suppressive activity of protease inhibitors from buckwheat seeds against human T-acute lymphoblastic leukemia cell lines. Appl Biochem Biotechnol 117:65–74

    PubMed  CAS  Google Scholar 

  • Petrov DA (2001) Evolution of genome size: new approaches to an old problem. Trends Genet 17:23–28

    PubMed  CAS  Google Scholar 

  • Petrov DA (2002a) Mutational equilibrium model of genome size evolution. Theor Popul Biol 61:533–546

    Google Scholar 

  • Petrov DA (2002b) DNA loss and evolution of genome size in Drosophila. Genetica 115:81–89

    PubMed  CAS  Google Scholar 

  • Price HJ (1988) Nuclear DNA content variation within angiosperm species. Evol Trends Plants 2:53–60

    Google Scholar 

  • Price HJ, Chambers KL, Bachmann K (1981) Geographic and ecological distribution of genomic DNA content variation in Microseris douglasii (Asteraceae). Bot Gaz 142:415–426

    CAS  Google Scholar 

  • Radović SR, Maksimović VR, Varkonji-Gasić EI (1999) Characterization of buckwheat seed storage proteins. J Agric Food Chem 44:972–974

    Google Scholar 

  • Rana JC (1998) Genetic diversity and correlation analysis in tartary buckwheat (Fagopyrum tartarium) gene pool. In: Proceedings of 7th international symposium on buckwheat, 12–14 Aug 1998, Winnipeg, Canada, pp 220–230

    Google Scholar 

  • Ronse Decraene LP, Akeroyd IR (1988) Generic limits in Polygonum and related genera (Polygonaceae) on the basis of floral characters. Bot J Linn Soc 98:321–371

    Google Scholar 

  • Rout MK, Chrungoo NK (1996) Partial characterization of the lysine rich 280kD globulin from common buckwheat (Fagopyrum esculentum Moench): its antigenic homology with seed proteins of some other crops. Biochem Mol Biol 40:587–595

    CAS  Google Scholar 

  • Rout MK, Chrungoo NK (1999) The lysine and methionine rich basic subunit of buckwheat grain legumin: some results of a structural study. Biochem Mol Biol Int 47(6):921–926

    PubMed  CAS  Google Scholar 

  • Rout A, Chrungoo NK (2007) Genetic variation and species relationships in Himalayan buckwheat as revealed by SDS-PAGE of endosperm proteins extracted from single seeds and RAPD based fingerprints. Genet Resour Crop Evol 54:767–777

    CAS  Google Scholar 

  • Rout MK, Chrungoo NK, Rao KS (1997) Amino acid sequence of the basic subunit of 13S globulin of buckwheat. Phytochemistry 45(5):865–867

    PubMed  CAS  Google Scholar 

  • Samimy C (1991) Barrier to interspecific crossing of Fagopyrum esculentum with Fagopyrum tataricum: I. Site of pollen-tube arrest. II. Organogenesis from immature embryos of F. tataricum. Euphytica 54:215–219

    Google Scholar 

  • Sharma T, Jana S (2002) Species relationships in Fagopyrum revealed by PCR-based DNA fingerprinting. Theor Appl Genet 105:306–312

    PubMed  CAS  Google Scholar 

  • Sneller CH, Miles J, Hoyt JM (1997) Agronomic performance of soybean plant introduction and their genetic similarity to elite lines. Crop Sci 37:1595–1600

    Google Scholar 

  • Soltis DE, Rieseberg LH (1986) Autopolyploidy in Tolmiea menziesii (Saxifragaceae): genetic insights from enzyme electrophoresis. Am J Bot 73:310–318

    CAS  Google Scholar 

  • Sparrow AH, Price HJ, Underbrink AG (1972) A survey of DNA content per cell and per chromosome of prokaryotic and eukaryotic organisms: some evolutionary considerations. Brookhaven Symp Biol 23:451–494

    PubMed  CAS  Google Scholar 

  • Stebbins GL (1957) Self fertilization and population variability in the higher plants. Am Nat 91:337–354

    Google Scholar 

  • Steward AN (1930) The Polygoneae of Eastern Asia. Contrib Gray Herb Harvard Univ 88:1–129

    Google Scholar 

  • Stibilj V, Kreft I, Smrkolj P, Osvald J (2004) Enhanced selenium content in buckwheat (Fagopyrum esculentum Moench) and pumpkin (Cucurbita pepo L.) seeds by foliar fertilization. Eur Food Res Technol 219(2):142–144

    CAS  Google Scholar 

  • Stoletova EA (1958) Buckwheat. National Publishing House of Agricultural Literatures, Moscow, USSR, (in Russian)

    Google Scholar 

  • Suvorova GN, Fesenko NN, Kostrubin MM (1994) Obtaining of interspecific buckwheat hybrid (Fagopyrum esculentum Moench x Fagopyrum cymosum Meissn.). Fagopyrum 14:13–16

    Google Scholar 

  • Thomas KS (1971) The genetic organization of chromosomes. Annu Rev Genet 5:237–256

    PubMed  CAS  Google Scholar 

  • Tsuji K, Ohnishi O (1998) Phylogenetic relationships among cultivated landraces and natural populations of tartary buckwheat (Fagopyrum tataricum) revealed by RAPD analyses. In: Proceedings of 7th international symposium on buckwheat, Part IV, pp 41–49

    Google Scholar 

  • Tsuji K, Ohnishi O (2000) Origin of cultivated tartary buckwheat (Fagopyrum tataricum Gaertn.) revealed by RAPD analysis. Genet Resour Crop Evol 47:431–438

    Google Scholar 

  • Tsuji K, Ohnishi O (2001a) Phylogenetic position of east Tibetan natural populations in tartary buckwheat (Fagopyrum tataricum Gaertn.) revealed by RAPD analyses. Genet Resour Crop Evol 48:63–67

    Google Scholar 

  • Tsuji K, Ohnishi O (2001b) Phylogenetic relationships among wild and cultivated tartary buckwheat (Fagopyrum tataricum Gaertn.) populations revealed by AFLP analyses. Genes Genet Syst 76:47–52

    PubMed  CAS  Google Scholar 

  • Tsuji K, Yasui Y, Ohnishi O (1999) Search for Fagopyrum species in eastern Tibet. Fagopyrum 16:1–6

    Google Scholar 

  • Vavilov N (1926) Center of origin of cultivated plants. Papers on Applied Botany, Genetics and Plant Breeding, 16(2) Leningrad (in Russian), English translation by D Love 1992. Origin and geography of cultivated plants. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Wang ZY (1987) Study of esterase isozyme on buckwheat. J Shanxi Agric Sci 12:2–4

    Google Scholar 

  • Watanabe M (1998) Catechins as antioxidants from buckwheat (Fagopyrum esculentum Moench) groats. J Agric Food Chem 46(3):839–845

    CAS  Google Scholar 

  • Wei Y, Hu X, Zhang G, Ouyang S (2003) Studies on the amino acid and mineral content of buckwheat protein fractions. Nahrung/Food 47:114–116

    CAS  Google Scholar 

  • Wendel JF, Cronn RC, Johnston JS, Price HJ (2002) Feast and famine in plant genomes. Genetica 115:37–47

    PubMed  CAS  Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nuclear DNA. Proc Natl Acad Sci USA 84:9054–9058

    PubMed  CAS  Google Scholar 

  • Wright SI, Schoen DJ (1999) Transposon dynamics and the breeding system. Genetica 107:139–148

    PubMed  CAS  Google Scholar 

  • Yamane K, Ohnishi O (2001) Phylogenetic relationships among natural populations of perennial buckwheat, Fagopyrum cymosum Meisn. revealed by allozyme variations. Genet Resour Crop Evol 48:69–77

    Google Scholar 

  • Yamane K, Ohnishi O (2003) Morphological variation and differentiation between diploid and tetraploid cytotypes of Fagopyrum cymosum. Fagopyrum 20:17–25

    Google Scholar 

  • Yamane K, Yasui Y, Ohnishi O (2003) Intraspecific cpDNA variations of diploid and tetraploid perennial buckwheat, Fagopyrum cymosum (Polygonaceae). Am J Bot 90:339–346

    Google Scholar 

  • Yamane K, Tsuji K, Ohnishi O (2004) Speciation of Fagopyrum tartaricum inferred from molecular data. In: Proceedings of 9th international symposium on buckwheat, 18–22 Aug 2004, Prague, Czech Republic, pp 317–322

    Google Scholar 

  • Yasui Y, Matsuoka Y (1998) Phylogenetic relationships among Fagopyrum species revealed by the nucleotide sequences of the ITS region of the nuclear rRNA gene. Genes Genet Syst 73:201–210

    PubMed  CAS  Google Scholar 

  • Yasui Y, Ohnishi O (1998a) Interspecific relationships in Fagopyrum (Polygonaceae) revealed by the nucleotide sequences of the rbcL and accD genes and their intergenic region. Am J Bot 85:1134–1142

    CAS  Google Scholar 

  • Yasui Y, Ohnishi O (1998b) Phylogenetic relationships among Fagopyrum species revealed by nucleotide sequences of the ITS region of the nuclear rRNA gene. Genes Genet Syst 73:201–210

    PubMed  CAS  Google Scholar 

  • Zeller JF (2001) Buckwheat (Fagopyrum esculentum Moench): Utilization, genetics, breeding. Bodenkultur 52(3):259–276

    CAS  Google Scholar 

  • Zeller JF, Heidi W, Hasam HLK (2004) Identification and genetics of buckwheat (Fagopyrum) seed storage protein. In: Proceedings of 9th international symposium on buckwheat, 18–22 Aug 2004, Prague, Czech Republic, pp 195–201

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil K. Chrungoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chrungoo, N.K., Sangma, S.C., Bhatt, V., Raina, S.N. (2011). Fagopyrum. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14228-4_5

Download citation

Publish with us

Policies and ethics