Skip to main content

Abstract

The genus Zea belongs to the Poaceae family and consists of the species Zea mays, Zea diploperennis, Zea perennis, Zea luxurians, and Zea nicaraguensis. Z. mays is comprised of four subspecies: mays, parviglumis, huehuetenangensis, and mexicana. Only Z. mays ssp. mays, otherwise known as maize, has been domesticated, thereby generating a crop with exceptional agricultural productivity and worldwide distribution. Other species and subspecies in the genus Zea, commonly called teosintes, are the closest wild relatives of maize, while the next closest relatives are in the genus Tripsacum. These wild species are important resources for the study of maize genetics and genome evolution and could become vital for maize improvement by modern breeding approaches. In this chapter, we will describe these wild Zea species with reference to their morphology, distribution, conservation, domestication, and the role they have played in genetic studies and maize improvement. Future directions in research and utilization of the wild Zea and Tripsacum species will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aulicino MB, Magoja JL (1991) Variability and heterosis in maize-Balsas teosinte and maize- Guatemala teosinte hybrids. Maize Genet Coop Newsl 65:43–44

    Google Scholar 

  • Aylor DE, Baltazar BM, Schoper JB (2005) Some physical properties of teosinte (Zea mays subsp. parviglumis) pollen. J Exp Bot 56:2401–2407

    PubMed  CAS  Google Scholar 

  • Baltazar BM, Schoper JB (2002) Crop-to-crop gene flow: dispersal of transgenes in maize, during field tests and commercialization. In: 7th international symposium on biosafety of genetically modified organisms, Beijing, China, 10–16 Oct 2002, pp 24–33

    Google Scholar 

  • Barton NH, Keightley PD (2002) The domestication of maize. Nat Rev Genet 3:11–21

    PubMed  CAS  Google Scholar 

  • Beadle GW (1939) Teosinte and the origin of maize. J Hered 30:245–247

    Google Scholar 

  • Beadle GW (1972) The mystery of maize. Field Museum Nat Hist Bull 43:2–11

    Google Scholar 

  • Beadle GW (1980) The ancestry of corn. Sci Am 242:112–119

    Google Scholar 

  • Bennetzen J, Buckler E, Chandler V, Doebley J, Dorweiler J, Gaut B et al (2001) Genetic evidence and the origin of maize. Lat Am Antiq 12(1):84–86

    Google Scholar 

  • Benz B (1988) In situ conservation of the genus Zea in the Sierra de Manantlan Biosphere Reserve. In: Recent advances in the conservation and utilization of genetic resources. Proceedings of global maize germplasm workshop, CIMMYT, Mexico, pp 59–69

    Google Scholar 

  • Benz BF, Iltis HH (1992) Evolution of female sexuality in the maize ear (Zea mays L. subsp. mays -Gramineae). Econ Bot 46(2):212–222

    Google Scholar 

  • Bergquist RR (1981) Transfer from Tripsacum dactyloides to corn of a major gene locus conditioning resistance to Puccinia sorghi. Phytopathology 71:518–520

    Google Scholar 

  • Blancas L, Arias DM, Ellstrand NC (2002) Patterns of genetic diversity in sympatric and allopatric populations of maize and its wild relative teosinte in Mexico: evidence for hybridization. In: Gene flow workshop, Ohio State University, Ohio, 6 Mar 2002, pp 31–38

    Google Scholar 

  • Bomblies K, Doebley JF (2006) Pleiotropic effects of the duplicate maize floricaula /leafy genes zfl1 and zfl2 on traits under selection during maize domestication. Genetics 172:519–531

    PubMed  CAS  Google Scholar 

  • Bomblies K, Wang RL, Ambrose BA, Schmidt RJ, Meeley RB, Doebley J (2003) Duplicate floricaula/leafy homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize. Development 130:2385–2395

    PubMed  CAS  Google Scholar 

  • Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S (2006) ramosa2 encodes a lateral organ boundary domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 18:574–585

    PubMed  CAS  Google Scholar 

  • Boudry P, Morchen M, Saumitou-Laprade P, Vernet PH, Van-Dijk H (1993) The origin and evolution of weed beets: consequences for the breeding and release of herbicide-resistant transgenic sugar beets. Theor Appl Genet 87:471–478

    Google Scholar 

  • Boyer CD (1982) Soluble starch synthases and starch branching enzymes from developing seed of teosinte. Maize Genet Coop Newsl 56:120–121

    Google Scholar 

  • Briggs WH, McMullen MD, Gaut BS, Doebley J (2007) Linkage mapping of domestication loci in a large maize–teosinte backcross resource. Genetics 177:1915–1928

    PubMed  Google Scholar 

  • Bruford MW, Wayne RK (1993) Microsatellites and their application to population genetic studies. Curr Opin Genet Dev 3:939–943

    PubMed  CAS  Google Scholar 

  • Buckler ES, Phelps-Durr TL, Buckler CSK, Dawe RK (1999) Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics 153:415–426

    PubMed  CAS  Google Scholar 

  • Carlson PS, Smith HH, Dearing RD (1972) Parasexual interspecific plant hybridization. Proc Natl Acad Sci USA 69(8):2292–2294

    PubMed  CAS  Google Scholar 

  • Castineiras L, Fundora Z, Pico S, Salinas E (2000) The use of home gardens as a component of national strategy for the in situ conservation of plant genetic resources in Cuba: a plot study. Plant Genet Resour Newsl 123:9–18

    Google Scholar 

  • Chase SS (1969) Monoploids and monoploid-derivatives of maize (Zea mays L.). Bot Rev 35:117–167

    Google Scholar 

  • Coe SD (ed) (1994) America’s first cuisines. University of Texas Press, TX, USA, pp 11–12

    Google Scholar 

  • Coe EH, Sarkar KR (1964) The detection of haploids in maize. J Hered 55:231–233

    Google Scholar 

  • Coe EH, Neuffer MG, Hoisington DA (1988) The genetics of corn. In: Sprague GF, Dudley JW (eds) Corn and corn improvement. American Society of Agronomy, Madison, WI, USA, pp 81–258

    Google Scholar 

  • Cohen JI, Galinat WC (1984) Potential use of alien germplasm for maize improvement. Crop Sci 24:1011–1015

    Google Scholar 

  • Collins GN (1919) Structure of the maize ear as indicated in Zea-Euchlaena hybrids. J Agri Res 17:127–135

    Google Scholar 

  • Collins GN, Kempton JH (1920) A teosinte-maize hybrid. J Agric Res 19:1–38

    Google Scholar 

  • Corcuera VR (1991) Maize-Balsas teosinte and maize-Guatemala teosinte hybrids: inheritance of prolificity. Maize Genet Coop Newsl 65:79–80

    Google Scholar 

  • Corcuera VR, Magoja JL (1991) Diploperennial teosinte-maize hybrids: inheritance of male spikelet outer glume traits. Maize Genet Coop Newsl 65:81–82

    Google Scholar 

  • Cox TS, Glover JD, Cox TS, Van Tassel DL, Dehaan LR (2006) Prospects for developing perennial grain crops. Bioscience 56(8):649–659

    Google Scholar 

  • Dennis ES, Peacock WJ (1984) Knob heterochromatin homology in maize and its relatives. J Mol Evol 20:341–350

    PubMed  CAS  Google Scholar 

  • Dewet JJ, Harlan JR (1976) Cytogenetic evidence for the origin of teosinte (Zea mays ssp. mexicana). Euphytica 25:447–455

    Google Scholar 

  • Doebley JF (1983) The maize and teosinte male inflorescence: a numerical taxonomic study. Ann Mo Bot Gard 70(1):32–70

    Google Scholar 

  • Doebley JF (1984) Maize introgression into teosinte-a reappraisal. Ann Mo Bot Gard 71:1100–1113

    Google Scholar 

  • Doebley JF (1990a) Molecular systematics of Zea (Gramineae). Maydica 35:143–150

    Google Scholar 

  • Doebley JF (1990b) Molecular evidence for gene flow among Zea species. Bioscience 40(6):443–448

    Google Scholar 

  • Doebley JF (2004) The genetics of maize evolution. Annu Rev Genet 38:37–59

    PubMed  CAS  Google Scholar 

  • Doebley JF, Iltis HH (1980) Taxonomy of Zea (Gramineae). I: A subgeneric classification with key to taxa. Am J Bot 67(6):982–993

    Google Scholar 

  • Doebley JF, Stec A (1991) Genetic analysis of the morphological differences between maize and teosinte. Genetics 129:285–295

    PubMed  CAS  Google Scholar 

  • Doebley JF, Stec A (1993) Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations. Genetics 134:559–570

    PubMed  CAS  Google Scholar 

  • Doebley JF, Goodman MM, Stuber CW (1984) Isoenzymatic variation in Zea (Gramineae). Syst Bot 9:203–218

    Google Scholar 

  • Doebley JF, Goodman MM, Stuber CW (1985) Isozyme variation in the races of maize from Mexico. Am J Bot 72(5):629–639

    CAS  Google Scholar 

  • Doebley JF, Goodman MM, Stuber CW (1987a) Patterns of isozyme variation between maize and Mexican annual teosinte. Econ Bot 41(2):234–246

    Google Scholar 

  • Doebley JF, Renfroe W, Blanton A (1987b) Restriction site variation in the Zea chloroplast genome. Genetics 117:139–147

    PubMed  CAS  Google Scholar 

  • Doebley JF, Stec A, Wendel J, Edwards M (1990) Genetic and morphological analysis of a maize-teosinte F2 population: implications for the origin of maize. Proc Natl Acad Sci USA 87:9888–9892

    PubMed  CAS  Google Scholar 

  • Doebley JF, Bacigalupo A, Stec A (1994) Inheritance of kernel weight in two maize-teosinte hybrid populations: implications for crop evolution. J Hered 85(3):191–195

    Google Scholar 

  • Doebley JF, Stec A, Gustus C (1995) Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346

    PubMed  CAS  Google Scholar 

  • Doebley JF, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    PubMed  CAS  Google Scholar 

  • Dong Q, Schlueter SD, Brendel V (2004) PlantGDB, plant genome database and analysis tools. Nucleic Acids Res 32:D354–D359

    PubMed  CAS  Google Scholar 

  • Dorweiler JE, Doebley J (1997) Developmental analysis of teosinte glume architecture1: a key locus in the evolution of maize (Poaceae). Am J Bot 84(10):1313–1322

    Google Scholar 

  • Dorweiler JM, Stec A, Kermicle J, Doebley J (1993) Teosinte glume architecture 1: a genetic locus controlling a key step in maize evolution. Science 262(8):233–235

    PubMed  CAS  Google Scholar 

  • Ellneskog-Staam P, Loaisiga CH, Merker A (2007) Chromosome C-banding of the teosinte Zea nicaraguensis and comparison to other Zea species. Hereditas 144:96–101

    PubMed  Google Scholar 

  • Ellstrand NC (1997) Evaluating the risks of transgene flow from crops to wild species. In: Serratos JA, Willcox MC, Castillo F (eds) Gene flow among maize landraces, improved maize varieties and teosinte: implications for transgenic maize. CIMMYT, Mexico, pp 81–83

    Google Scholar 

  • Ellstrand NC (ed) (2003) Dangerous liaisons? When cultivated plants mate with their wild relatives. Johns Hopkins University Press, Maryland, USA

    Google Scholar 

  • Ellstrand NC, Garner LC, Hegde S, Guadagnuolo R, Blancas L (2007) Spontaneous hybridization between maize and teosinte. J Hered 98(2):183–187

    PubMed  CAS  Google Scholar 

  • Eltringham SK (1984) Wild life resources and economic development. Wiley, New York, USA

    Google Scholar 

  • Evans MS, Kermicle JL (2001) Teosinte crossing barrier1, a locus governing hybridization of teosinte with maize. Theor Appl Genet 103:259–265

    CAS  Google Scholar 

  • FAO (1997) The state of the world’s plant genetic resources for food and agriculture. FAO, Rome, Italy

    Google Scholar 

  • FAO (2002) The role of women in the conservation of the genetic resources of maize (Guatemala). The Food and Agriculture Organization of the United Nations (FAO), Rome, Italy

    Google Scholar 

  • Farias-Rivera LA, Hernandez-Mendoza JL, Molina-Ochoa J et al (2002) Effect of leaf extracts of teosinte, Zea diploperennis L and a Mexican maize variety, criollo ‘uruapeno’ on the growth and survival of the fall armyworm (Lepidoptera:noctuidae). Florida Entomol 86(3):239–243

    Google Scholar 

  • Flor HH (1955) Host-parasite interaction in flax rust-its genetics and other implications. Phytopathology 45:680–685

    Google Scholar 

  • Frankel O (1970) Genetic conservation of plants useful to man. Biol Conserv 2:162–169

    Google Scholar 

  • Fukunaga K, Hill J, Vigouroux Y, Matsuoka Y, Sanchez J, Liu K et al (2005) Genetic diversity and population structure of teosinte. Genetics 169:2241–2254

    PubMed  CAS  Google Scholar 

  • Galinat WC (1985) The missing links between teosinte and maize: a review. Maydica 30:137–160

    Google Scholar 

  • Gallavotti A, Zhao Q, Kyozuka J, Meeley RB, Ritter MK, Doebley J et al (2004) The role of barren stalk1 in the architecture of maize. Nature 432:630–635

    PubMed  CAS  Google Scholar 

  • Garcia MD, Molina MC (2001) Embryo rescue and induction of somatic embryogenesis as a method to overcome seed inviability in Zea mays ssp. mays × Zea mays ssp. parviglumis crosses. Biol Planta 44(4):497–501

    Google Scholar 

  • Gaut BS, Doebley JF (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA 94:6809–6814

    PubMed  CAS  Google Scholar 

  • Global Crop Diversity Trust (2007) Global strategy for the ex situ conservation and utilization of maize germplasm. Global Crop Diversity Trust: www.croptrust.org/documents/web/Maize-Strategy-FINAL-18Sept07.pdf . Accessed 12 Oct 2008

  • Gonzalez G, Comas C, Confalonieri V, Naranjo CA, Poggio L (2006) Genomic affinities between maize and Zea perennis using classical and molecular cytogenetic methods (GISH-FISH). Chromosome Res 14:629–635

    PubMed  CAS  Google Scholar 

  • Guadagnuolo R, Clegg J, Ellstrand NC (2006) Relative fitness of transgenic vs. non-transgenic maize × teosinte hybrids: a field evaluation. Ecol Appl 16(5):1967–1974

    PubMed  CAS  Google Scholar 

  • Hanson MA, Gaut BS, Stec AO, Fuerstenberg SI, Goodman MM, Coe EH et al (1996) Evolution of anthocyanin biosynthesis in maize kernels: the role of regulatory and enzymatic loci. Genetics 143:1395–1407

    PubMed  CAS  Google Scholar 

  • Harjes CE, Smith ME, McCouch SR, Tanksley SD (1999) Advanced backcross QTL analysis and introgression of perennial teosinte alleles to maize. In: Plant and animal genome VII conference, San Diego, CA, USA, 17–21 Jan 1999, 260p

    Google Scholar 

  • Harshberger JW (1896) Fertile crosses of teosinte and maize. Gard For 9:522–523

    Google Scholar 

  • Hastorf CA (2009) Rio Balsas most likely region for maize domestication. Proc Natl Acad Sci USA 106(13):4957–4958

    PubMed  CAS  Google Scholar 

  • Hawkes JG, Maxted M, Ford-Lloyd BV (2000) The ex situ conservation of plant genetic resources. Springer, Berlin

    Google Scholar 

  • Helentjaris T, Weber DF, Wright S (1986) Use of monosomics to map cloned DNA fragments in maize. Proc Natl Acad Sci USA 83:6035–6039

    PubMed  CAS  Google Scholar 

  • Helentjaris T, Weber D, Wright S (1988) Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphism. Genetics 118:353–363

    PubMed  CAS  Google Scholar 

  • Hoisington D, Khairallah M, Reeves T, Ribaut JM, Skovmand B, Taba S et al (1999) Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl Acad Sci USA 96:5937–5943

    PubMed  CAS  Google Scholar 

  • Holst I, Moreno JE, Piperno DR (2007) Identification of teosinte, maize, and Tripsacum in Mesoamerica by using pollen, starch grains, and phytoliths. Proc Natl Acad Sci USA 104(45):17608–17613

    PubMed  CAS  Google Scholar 

  • Holtont A, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083

    Google Scholar 

  • Ilic K, SanMiguel PJ, Bennetzen JL (2003) A complex history of rearrangement in an orthologous region of the maize, sorghum and rice genomes. Proc Natl Acad Sci USA 100:12265–12270

    PubMed  CAS  Google Scholar 

  • Iltis HH (1983) From teosinte to maize: the catastrophic sexual transmutation. Science 222:886–894

    PubMed  CAS  Google Scholar 

  • Iltis HH (2000) Homeotic sexual translocations and the origin of maize (Zea mays, Poaceae): a new look at an old problem. Econ Bot 54(1):7–42

    Google Scholar 

  • Iltis HH, Benz BF (2000) Zea nicaraguensis (Poaceae), a new teosinte from pacific coastal Nicaragua. Novon 10(4):382–390

    Google Scholar 

  • Iltis HH, Doebley JF (1980) Taxonomy of Zea (Gramineae). II. subspecific categories in the Zea mays complex and a generic synopsis. Am J Bot 67(6):994–1004

    Google Scholar 

  • Iltis HH, Doebley JF, Guzman MR, Pazy B (1979) Zea diploperennis (Gramineae): a new teosinte from Mexico. Science 203:186–188

    PubMed  CAS  Google Scholar 

  • Kallo G, Rai M, Singh M, Kumar S, Book R (2006) Heterosis in crop plants. Researchco Book Center, New Delhi, India

    Google Scholar 

  • Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    PubMed  CAS  Google Scholar 

  • Kato YA (1976) Cytological studies of maize (Zea mays L) and teosinte (Zea mexicana Schrade Kuntze) relation to their origin and evolution. Mass Agric Exp Sta Bull 635:185

    Google Scholar 

  • Kato TA, Sanchez JJ (2002) Introgression of chromosome knobs from Zea diploperennis into maize. Maydica 47(1):33–50

    Google Scholar 

  • Kato A, Albert PS, Vega JM, Birchler JA (2006) Sensitive FISH signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotechnol Histochem 81:71–78

    Google Scholar 

  • Kindiger B, Hamann S (1993) Generation of haploids in maize: a modification of the indeterminate gametophyte (ig) system. Crop Sci 33(2):342–344

    Google Scholar 

  • Lai J, Ma J, Swigonová Z, Ramakrishna W, Linton E, Llaca V et al (2004) Gene loss and movement in the maize genome. Genome Res 14:1924–1931

    PubMed  CAS  Google Scholar 

  • Lamb JC, Danilova T, Bauer MJ, Meyer JM, Holland JJ, Jensen MD et al (2007) Single-gene detection and karyotyping using small-target fluorescence in situ hybridization on maize somatic chromosomes. Genetics 175(3):1047–1058

    PubMed  CAS  Google Scholar 

  • Lauter N, Gustus C, Westerbergh A, Doebley J (2004) The inheritance and evolution of leaf pigmentation and pubescence in teosinte. Genetics 167:1949–1959

    PubMed  CAS  Google Scholar 

  • Lawrence CJ, Dong Q, Polacco ML, Seigfried TE, Brendel V (2004) Maize GDB, the community database for maize genetics and genomics. Nucleic Acids Res 32:D393–D397

    PubMed  CAS  Google Scholar 

  • Liu J, Xu X, Deng X (2005) Intergeneric somatic hybridization and its application to crop genetic improvement. Plant Cell Tiss Organ Cult 82:19–44

    CAS  Google Scholar 

  • Louette D, Charrier A, Berthaud J (1997) In situ conservation of maize in Mexico: genetic diversity and maize seed management in a traditional community. Econ Bot 51(1):20–38

    Google Scholar 

  • Lubberstedt T, Dussle C, Melchinger AE (1998) Application of microsatellites from maize to teosinte and other relatives of maize. Plant Breed 117:447–450

    Google Scholar 

  • Lukens LN, Doebley J (1999) Epistatic and environmental interactions for quantitative trait loci involved in maize evolution. Genet Res 74:291–302

    CAS  Google Scholar 

  • Mackay TFC (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339

    PubMed  CAS  Google Scholar 

  • Magoja JL, Benito G (1981) Inheritance of some characters in maize-perennial teosinte hybrids. Maize Genet Coop Newsl 55:58–60

    Google Scholar 

  • Magoja JL, Benito G (1982) Heterosis in maize-perennial teosinte hybrids. Maize Genet Coop Newsl 56:104–106

    Google Scholar 

  • Magoja JL, Benito G (1983) Perennial teosinte-Gaspe hybrids: inheritance of the number of leaves. Maize Genet Coop Newsl 57:65–66

    Google Scholar 

  • Magoja JL, Palacios I (1984) Perennial teosinte-Gaspe hybrids: inheritance of pollen grain size. Maize Genet Coop Newsl 58:118–120

    Google Scholar 

  • Magoja JL, Palacios I (1987) Early expression of heterosis in diploperennial teosinte-maize hybrids. Maize Genet Coop Newsl 61:63–64

    Google Scholar 

  • Mangelsdorf PC (1947) The origin and evolution of maize. Adv Genet 1:161–207

    PubMed  CAS  Google Scholar 

  • Mangelsdorf PC, Reeves RG (1939) The origin of Indian corn and its relatives. Texas Agric Exp Sta Bull 574:1–315

    Google Scholar 

  • Mano Y, Omori F (2008) Verification of QTL controlling root aerenchyma formation in a maize teositne “Zea nicaraguensis” advanced backcross population. Breed Sci 58:217–223

    Google Scholar 

  • Mano Y, Omori F, Takamizo T, Kindiger B, RMcK B, Loaisiga CH et al (2007) QTL mapping of root aerenchyma formation in seedlings of a maize × rare teosinte “Zea nicaraguensis” cross. Plant Soil 295:103–113

    CAS  Google Scholar 

  • Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genom Hum Genet 9:387–402

    CAS  Google Scholar 

  • Matsuoka Y, Mitchell SE, Kresovich S, Goodman M, Doebley J (2002a) Microsatellites in Zea – variability, patterns of mutations and use for evolutionary studies. Theor Appl Genet 104:436–450

    PubMed  CAS  Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez J, Buckle E, Doebley J (2002b) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99(9):6080–6084

    PubMed  CAS  Google Scholar 

  • Meilleur BA, Hodgkin T (2004) In situ conservation of crop wild relatives: status and trends. Biodivers Conserv 13:663–684

    Google Scholar 

  • Moeller DA, Tiffin P (2005) Genetic diversity and the evolutionary history of plant immunity genes in two species of Zea. Mol Biol Evol 22(12):2480–2490

    PubMed  CAS  Google Scholar 

  • Moeller DA, Tiffin P (2008) Geographic variation in adaptation at the molecular level: a case study of plant immunity genes. Evolution 62(12):3069–3081

    PubMed  CAS  Google Scholar 

  • Moffat AS (1996) Agricultural research–higher yielding perennials point the way to new crops. Science 274:1469–1470

    CAS  Google Scholar 

  • Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants-salient statistical tools and considerations. Crop Sci 43:1235–1248

    Google Scholar 

  • Molina MC (1983) Cytogenetic study of a tetraploid hybrid between Zea diploperennis and Zea perennis. Maize Genet Coop Newsl 57:62

    Google Scholar 

  • Molina MC, Garcia MD (1999) Influence of ploidy levels on phenotypic and cytogenetic traits in maize and Zea perennis hybrids. Cytologia 64:101–109

    Google Scholar 

  • Molina MC, Naranjo CA (1987) Cytogenetic studies in the genus Zea 1. Evidence for five as the basic chromosome number. Theor Appl Genet 73:542–550

    Google Scholar 

  • Molina MC, García MD, López CG, Ferrero VM (2004) Meiotic pairing in the hybrid (Zea diploperennis × Zea perennis) × Zea mays and its reciprocal. Hereditas 141:135–141

    Google Scholar 

  • Nadeau JH, Dunn PJ (1998) Genomic strategies for defining and dissecting developmental and physiological pathways. Curr Opin Genet Dev 8(3):311–315

    PubMed  CAS  Google Scholar 

  • National Research Council (US) (1993) Agricultural crop issues and policies. National Academies Press, Washington, DC, USA

    Google Scholar 

  • Nimchuk Z, Eulgem T, Holt BF, Dangl JL (2003) Recognition and response in the plant immune system. Annu Rev Genet 37:579–609

    PubMed  CAS  Google Scholar 

  • Orr AR, Sundberg MD (1994) Inflorescence development in a perennial teosinte: Zea perennis (Poaceae). Am J Bot 81(5):598–608

    Google Scholar 

  • Orr AR, Mullen K, Klaahsen D, Sundberg MD (2002) Inflorescence development in a high-altitude annual Mexican teosinte (Poaceae). Am J Bot 89(11):1730–1740

    Google Scholar 

  • Palacios I, Magoja JL (1984) Perennial teosinte-Gaspe hybrids: inheritance of tassel branching traits. Maize Genet Coop Newsl 58:122–127

    Google Scholar 

  • Pardey PG, Koo B, Wright BD, Dusen MEV, Skovmand B, Taba S (2001) Costing the conservation of genetic resources: CIMMYT’s ex situ maize and wheat collection. Crop Sci 41:1286–1299

    Google Scholar 

  • Paulis JW, Wall JS (1977) Comparison of the protein compositions of selected corns and their wild relatives, teosinte and Tripsacum. J Agric Food Chem 25(2):265–270

    CAS  Google Scholar 

  • Perini LA, Magoja JL (1988) Effect of perennial teosinte introgression in maize on kernel protein content. Maize Genet Coop Newsl 62:80

    Google Scholar 

  • Perini LH, Pischedda G, Magoja JL (1991) Diploperennial teosinte introgressed population of maize: kernel protein content. Maize Genet Coop Newsl 65:40

    Google Scholar 

  • Phillips RL, Vasil IK (1994) DNA-based markers in plants. Kluwer, Dordrecht, Netherlands

    Google Scholar 

  • Piperno DR (ed) (2006) Phytoliths: a comprehensive guide for archaeologists and paleoecologists. Altamira press, PA, USA, 65 p

    Google Scholar 

  • Piperno DR, Flannery KV (2001) The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications. Proc Natl Acad Sci USA 98(4):2101–2103

    Google Scholar 

  • Piperno DR, Pearsall DM (1999) The origins of agriculture in the lowland neotropics. Academic, San Diego, California, USA

    Google Scholar 

  • Piperno DR, Ranere AJ, Holst I, Iriarte J, Dickau R (2009) Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico. Proc Natl Acad Sci USA 106(13):5019–5024

    PubMed  CAS  Google Scholar 

  • Pischedda G, Magoja JL (1985) Perennial teosinte-Gaspe hybrids: selection for maizoid characters. Maize Genet Coop Newsl 59:70–71

    Google Scholar 

  • Poggio L, Molina MC, Naranjo CA (1990) Cytogenetic studies in the genus Zea. 2. Colchicine-induced multivalents. Theor Appl Genet 79:461–464

    Google Scholar 

  • Poggio L, Confalonieri V, Comas C, Gonzalez G, Naranjo CA (1999) Genomic affinities of Zea luxurians, Z. diploperennis, and Z. perennis: meiotic behavior of their F1 hybrids and genomic in situ hybridization (GISH). Genome 42:993–1000

    Google Scholar 

  • Poggio L, Confalonieri V, Comas C, Gonzalez G, Naranjo1 CA (2000) Evolutionary relationships in the genus Zea: analysis of repetitive sequences used as cytological FISH and GISH markers. Genet Mol Biol 23(4):1021–1027

    CAS  Google Scholar 

  • Prescott-Allen R, Prescott-Allen C (1981) In situ conservation of crop genetic resources: a report to the international board for plant genetic resources (IBPGR). IUCN, Gland, Switzerland

    Google Scholar 

  • Ranere AJ, Piperno DR, Holst I, Dickau R, Iriarte J (2009) The cultural and chronological context of early Holocene maize and squash domestication in the Central Balsas River Valley, Mexico. Proc Natl Acad Sci USA 106(13):5014–5018

    PubMed  CAS  Google Scholar 

  • Rausher MD (2001) Co-evolution and plant resistance to natural enemies. Nature 411(14):857–864

    PubMed  CAS  Google Scholar 

  • Ray JD, Kindiger B, Sinclair TR (1999) Introgressing root aerenchyma into maize. Maydica 44(2):113–117

    Google Scholar 

  • Raz R, Puigdomènech P, Martinez-Izquierdo J (1991) A new family of repetitive nucleotide sequences is restricted to the genus Zea. Gene 105(2):151–158

    PubMed  CAS  Google Scholar 

  • Reeves RG (1950) The use of teosinte in the improvement of corn inbreds. Agron J 42:248–251

    Google Scholar 

  • Rhoades MM (1951) Duplicated genes in maize. Am Nat 85:105–110

    Google Scholar 

  • Robinett D, Coe E, Cone K (1995) Map location of anthocyanin 3. Maize Genet Coop News Lett 69:46

    Google Scholar 

  • Sánchez-González JJ, Ruiz-Corral JA (1997) Teosinte distribution in Mexico. In: Serratos JA, Willcox MC, Castillo GF (eds) Proceedings of a forum “gene flow among maize landraces, improved maize varieties, and Teosinte: implications for transgenic maize”. CIMMYT, Mexico, pp 18–36

    Google Scholar 

  • Sanchez-Velasquez LR, Ezcurra E, Martinez-Ramos M, Álvarez-Buylla E, Lorente R (2002) Population dynamics of Zea diploperennis, an endangered perennial herb: effect of slash and burn practice. J Ecol 90(4):684–692

    Google Scholar 

  • Schmidt WH, Colville WL (1963) Forage yield and composition of teosinte, corn, and forage sorghum grown under irrigation. Agron J 55:327–328

    Google Scholar 

  • Schuman KM (1904) Mais und Teosinte. In: Urban I, Graebner P (eds) Ascherson fur Festschrift. Verlag von Gebruder Borntraeger, Leipzig, Germany, pp 137–157

    Google Scholar 

  • Shindo C, Bernasconi G, Hardtke CS (2007) Natural genetic variation in Arabidopsis: tools, traits and prospects for evolutionary ecology. Ann Bot 99:1043–1054

    PubMed  CAS  Google Scholar 

  • Shull GH (1948) What is heterosis. Genetics 33(5):439–446

    Google Scholar 

  • Smith JC, Goodman MM (1981) A comparison of chromosome knob frequencies between sympatric and allopatric populations of teosinte and maize. Am J Bot 68(7):947–954

    Google Scholar 

  • Smith JC, Lester RN (1980) Biochemical systematics and evolution of Zea, Tripsacum and related genera. Econ Bot 34(3):201–218

    Google Scholar 

  • Smith JC, Goodman MM, Stuber CW (1984) Variation within teosinte III. Numerical analysis of allozyme data. Econ Bot 38(1):97–113

    Google Scholar 

  • Smith CW, Betrán J, Runge EA (2004) Corn: origin, history, technology, and production. Wiley, NJ, USA

    Google Scholar 

  • Srinivasan G, Brewbaker JL (1999) Genetic analysis of hybrids between maize and perennial teosinte. I. Morphological traits. Maydica 44(4):353–369

    Google Scholar 

  • Suenaga K, Morshedi AR, Darvey NL (1998) Evaluation of teosinte lines as pollen parents for wheat haploid production. Cereal Res Commun 26:119–125

    Google Scholar 

  • Swigonová Z, Lai J, Ma J, Ramakrishna W, Llaca V, Bennetzen JL et al (2004) Close split of sorghum and maize genome progenitors. Genome Res 14:1916–1923

    PubMed  Google Scholar 

  • Szabo VM, Burr B (1996) Simple inheritance of key traits distinguishing maize and teosinte. Mol Gen Genet 252:33–41

    PubMed  CAS  Google Scholar 

  • Taba S (1995) Maize genetic resources. Maize Program Special Report. CIMMYT, Mexico

    Google Scholar 

  • Taba S (2003) Latin American maize germplasm conservation: regeneration, in situ conservation, core subsets, and rebreeding (Proceedings of a workshop). CIMMYT, Mexico

    Google Scholar 

  • Takahashi C, Marshall JA, Bennett MD (1999) Genomic relationships between maize and its wild relatives. Genome 42:1201–1207

    PubMed  CAS  Google Scholar 

  • Tang Q, Rong T, Song Y, Yang J, Pan G, Li W et al (2005a) Introgression of perennial teosinte genome into maize and identification of genomic in situ hybridization and microsatellite markers. Crop Sci 45:717–721

    CAS  Google Scholar 

  • Tang F, Tao Y, Zhao T, Wang G (2005b) In vitro production of haploid and doubled haploid plants from pollinated ovaries of maize (Zea mays). Plant Cell Tiss Organ Cult 84:233–237

    Google Scholar 

  • Thompson JN, Burdon JJ (1992) Gene-for-gene coevolution between plants and parasites. Nature 360:121–125

    Google Scholar 

  • Tian F, Stevens NM, Buckler ES (2009) Tracking footprints of maize domestication and evidence for a massive selective sweep on chromosome 10. Proc Natl Acad Sci USA 106:9979–9986

    PubMed  CAS  Google Scholar 

  • Tiffin P (2004) Comparative evolutionary histories of chitinase genes in the genus Zea and family Poaceae. Genetics 167:1331–1340

    PubMed  CAS  Google Scholar 

  • Tiffin P, Gaut BS (2001) Molecular evolution of the wound-induced serine protease inhibitor wip1 in Zea and related genera. Mol Biol Evol 18(11):2092–2101

    PubMed  CAS  Google Scholar 

  • Tiffin P, Hacker R, Gaut BS (2004) Population genetic evidence for rapid changes in intraspecific diversity and allelic cycling of a specialist defense gene in Zea. Genetics 168:425–434

    PubMed  CAS  Google Scholar 

  • Timothy DH, Levings CS, Pring DR, Conde MF, Kermicle JL (1979) Organelle DNA variation and systematic relationships in the genus Zea: teosinte. Proc Natl Acad Sci USA 76(9):4220–4224

    PubMed  CAS  Google Scholar 

  • Tito CM, Poggio L, Naranjo CA (1991) Cytogenetic studies in the genus Zea. 3. DNA content and heterochromatin in species and hybrids. Theor Appl Genet 83:58–64

    Google Scholar 

  • Tuxill J, Nabhan GP (2001) People, plant and protected areas: a guide to in situ management. Earthscan, London, UK

    Google Scholar 

  • Ushiyama T, Yoshida T (2008) Response to GA and variation of the culm length in doubled haploid lines of wheat. Plant Prod Sci 11(2):217–222

    CAS  Google Scholar 

  • Ushiyama T, Shimizu T, Kuwabara T (1991) High frequency of haploid production of wheat through intergeneric crosses with teosinte. Jpn J Breed 41:353–357

    Google Scholar 

  • Varvio SL, Chakraborty R, Nei M (1986) Genetic variation in subdivided populations and conservation genetics. Heredity 57:189–198

    PubMed  Google Scholar 

  • Vigouroux McMullen M, Hittinger CT, Houchins K, Schulz L, Kresovich S et al (2002) Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Natl Acad Sci USA 99(15):9650–9655

    PubMed  CAS  Google Scholar 

  • Vollbrecht E, Springer PS, Goh L, Buckler ES, Martienssen R (2005) Architecture of floral branch systems in maize and related grasses. Nature 436:1119–1126

    PubMed  CAS  Google Scholar 

  • Wang RL, Stec A, Hey J, Lukens L, Doebley J (1999) The limits of selection during maize domestication. Nature 398:236–239

    PubMed  CAS  Google Scholar 

  • Wang H, Wagler TN, Li B, Zhao Q, Vigouroux Y, Faller M et al (2005) The origin of the naked grains of maize. Nature 436:714–719

    PubMed  CAS  Google Scholar 

  • Wang S, Basten J, Zeng ZB (2006) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State Univesity, Raleigh, NC, USA

    Google Scholar 

  • Wang L, Xu C, Qu M, Zhang J (2008a) Kernel amino acid composition and protein content of introgression lines from Zea mays ssp. mexicana into cultivated maize. J Cereal Sci 48:387–393

    CAS  Google Scholar 

  • Wang L, Yang AF, He CM, Qu M, Zhang J (2008b) Creation of new maize germplasm using alien introgression from Zea mays ssp. mexicana. Euphytica 164:789–801

    Google Scholar 

  • Warburton M, Crossa JL (2000) Data analysis in the CIMMYT applied biotechnology center for fingerprinting and genetic diversity studies. CIMMYT, Mexico

    Google Scholar 

  • Weber DF (1986) The production and utilization of monosomic Zea mays in cytogenetic studies. In: Reddy GM, Coe EH (eds) Gene structure and function in higher plants. Oxford and IBH, New Delhi, India, pp 190–204

    Google Scholar 

  • Weber A, Clark RM, Vaughn L, Sánchez-Gonzalez JJ, Yu J, Yandell BS et al (2007) Major regulatory genes in maize contribute to standing variation in teosinte (Zea mays ssp. parviglumis). Genetics 77:2349–2359

    Google Scholar 

  • Weber AL, Briggs WH, Rucher J, Baltazar BM, Sánchez-Gonzalez JJ, Feng P et al (2008) The genetic architecture of complex traits in teosinte (Zea mays ssp. parviglumis): new evidence from association mapping. Genetics 180:1221–1232

    PubMed  CAS  Google Scholar 

  • Webster D, Rue D, Traverse A (2005) Early Zea cultivation in Honduras: implications for the Iltis hypothesis. Econ Bot 59(2):101–111

    Google Scholar 

  • Wei W, Zhao W, Song Y, Liu L, Guo L, Gu M (2003) Genomic in situ hybridization analysis for identification of introgressed segments in alloplasmic lines from Zea mays × Zea diploperennis. Hereditas 138:21–26

    PubMed  Google Scholar 

  • Westerbergh A, Doebley JF (2002) Morphological traits defining species differences in wild relatives of maize are controlled by multiple quantitative trait loci. Evolution 56(2):273–283

    PubMed  Google Scholar 

  • Westerbergh A, Doebley JF (2004) Quantitative trait loci controlling phenotypes related to the perennial versus annual habit in wild relatives of maize. Theor Appl Genet 109:1544–1553

    PubMed  CAS  Google Scholar 

  • White SE, Doebley JF (1999) The molecular evolution of terminal ear1, a regulatory gene in the genus Zea. Genetics 153:1455–1462

    PubMed  CAS  Google Scholar 

  • Whitt SR, Wilson LM, Tenaillon MI, Gaut BS, Buckler ES (2002) Genetic diversity and selection in the maize starch pathway. Proc Natl Acad Sci USA 99:12959–12962

    PubMed  CAS  Google Scholar 

  • Wilkes HG (1967) Teosinte, the closest relative of maize. Harvard University Press, Cambridge, Massachusetts, USA

    Google Scholar 

  • Wilkes HG (1972) Maize and its wild relatives. Science 177:1071–1077

    PubMed  CAS  Google Scholar 

  • Wilkes HG (1977) Hybridization of maize and teosinte in Mexico and Guatemala and the improvement of maize. Econ Bot 31:254–293

    Google Scholar 

  • Wilkes HG (1985) Teosinte: the closest relative of maize revisited. Maydica 30:209–223

    Google Scholar 

  • Wilkes HG (1997) Teosinte in Mexico: personal retrospective and assessment. In: Serratos JA, Willcox MC, Castillo GF (eds) Proceedings of a forum “gene flow among maize landraces, improved maize varieties, and Teosinte: implications for transgenic maize”. CIMMYT, Mexico, pp 10–17

    Google Scholar 

  • Wilkes HG (2007) Urgent notice to all maize researchers: disappearance and extinction of the last wild teosinte population is more than half completed. A modest proposal for teosinte evolution and conservation in situ: The Balsas, Guerrero, Mexico. Maydica 52:49–58

    Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Google Scholar 

  • Yamasaki M, Tenaillon M, Bi IV, Schroeder SG, Sanchez-Villeda H, Doebley JF (2005) A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. Plant Cell 17:2859–2872

    PubMed  CAS  Google Scholar 

  • Zeng ZB (1993) Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    PubMed  CAS  Google Scholar 

  • Zhang LQ, Peek AS, Dunams D, Gaut BS (2002) Population genetics of duplicated disease-defense genes, hm1 and hm2, in maize (Zea mays ssp. mays) and its wild ancestor (Zea mays ssp. parviglumis). Genetics 162:851–860

    PubMed  CAS  Google Scholar 

  • Zhang Z, Qiu F, Liu Y, Ma K, Li Z, Xu S (2008) Chromosome elimination and in vivo haploid production induced by Stock 6-derived inducer line in maize (Zea mays L.). Plant Cell Rep 27:1851–1860

    PubMed  CAS  Google Scholar 

  • Zhao ZY, Weber DF (1988) Analysis of nondisjunction induced by the r-X1 deficiency during microsporogenesis in Zea mays L. Genetics 119:975–980

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramakrishna Wusirika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wusirika, R., Li, K., Phillips, R.L., Bennetzen, J.L. (2011). Zea. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14228-4_11

Download citation

Publish with us

Policies and ethics