Skip to main content

Enzyme Activities in the Rhizosphere of Plants

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 22))

Abstract

The activity of hydrolases in the rhizosphere soil are involved in the decomposition of organic residues, cycling of nutrients, and in maintaining soil fertility and plant productivity. Rhizosphere microrganisms release extracellular enzymes for the initial degradation of high molecular polymers, that can also result in the suppression of plant pathogenic fungi directly. Root exudates including plant growth promoting regulators have different stimulatory effects on microbial growth and on hydrolase activities in the rhizosphere. Possible causes for lower enzyme production in the rhizosphere of trace element contaminated soils and/or saline soils could be microbial metabolic stress and osmotic potential of the soil due to higher salt concentrations. In spite of increasing knowledge on the microbial community composition, no comparisons with the enzyme activity are normally carried out in order to reveal relationship between microbial diversity and enzyme activity in the rhizosphere.. This kind of comparative work may be of great interest from theoretical and practical aspects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221

    Article  CAS  Google Scholar 

  • Badalucco L, Grego S, Dell’Orco S, Nannipieri P (1996) Effect of liming on some chemical, biochemical, and microbiological properties of acid soils under spruce (Picea abies L.). Biol Fertil Soils 14:76–83

    Article  Google Scholar 

  • Badalucco L, Kuikman PJ (2001) Mineralisation and immobilisation in the rhizosphere. In: Pinton A, Varanini Z, Nannipieri P (eds) The rhizosphere. Biochemistry and organic substances at the soil–plant interface. Marcel Dekker, New York, pp 159–196

    Google Scholar 

  • Batra L, Manna MC (1997) Dehydrogenase activity and microbial biomass carbon in salt affected soils of semi arid regions. Arid Soil Res Rehabil 3:293–303

    Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem 35:1183–1192

    Article  CAS  Google Scholar 

  • Briones AM, Okabe S, Umemiya Y, Ramsing NB, Reichardt W, Okuyama H (2003) Ammonia-oxidizing bacteria on root biofilms and their possible contribution to N use efficiency of different rice cultivars. Plant Soil 250:335–348

    Article  CAS  Google Scholar 

  • Burns RG (1982) Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biol Biochem 14:423–427

    Article  CAS  Google Scholar 

  • Burns RG (1986) Interaction of enzymes with soil mineral and organic colloids. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes. Soil Science Society of America, Madison, WI, pp 429–452

    Google Scholar 

  • Byrnes BH, Amberger A (1989) Fate of broadcast urea in a flooded soil when treated with N-(n-butyl) thiophospheric triamide, a urease inhibitor. Fertil Res 18:221–231

    Article  Google Scholar 

  • Carrasco L, Caravaca F, Alvarez-Rogel J, Roldán A (2006) Microbial processes in the rhizosphere soil of a heavy metals-contaminated Mediterranean salt marsh: a facilitating role of AM fungi. Chemosphere 64:104–111

    Article  PubMed  CAS  Google Scholar 

  • Ceccanti B, Garcia C (1994) Coupled chemical and biochemical methodologies to characterize a composting process and the humic substances. In: Senesi N, Miano T (eds) Humic Substances in the global environment and its implication on human health. Elsevier, New York, NY, pp 1279–1285

    Google Scholar 

  • Chanway CP (2002) Plant growth promotion by Bacillus and relatives. In: Berkeley R, Heyndrickx M, Logan N, De Vos P (eds) B subtilis for biocontrol in variety of plants. Blackwell, Malden, MA, pp 219–235

    Google Scholar 

  • Cleland RE (1990) Auxin and cell elongation. In: Davies PJ (ed) Plant hormones and their role in plant growth and development. Kluwer Academic, Dordrecht, The Netherlands, pp 132–148

    Google Scholar 

  • Cocking EC (2003) Endophytic colonisation of plant roots by nitrogen-fixing bacteria. Plant Soil 252:169–175

    Article  CAS  Google Scholar 

  • Colombo C, Palumbo G, Sannino F, Gianfreda L (2002) Chemical and biochemical indicators of managed agricultural soils. In: 17th World congress of soil science, Bangkok. Thailand, 1740-2, pp 1–9

    Google Scholar 

  • De-la-Peña C, Lei Z, Watson BS, Sumner LW, Vivanco JM (2008) Root-microbe communication through protein secretion. Journal of Biological Chemistry 283:25247–25255

    Article  PubMed  CAS  Google Scholar 

  • De Leij F, Whips JM, Lynch HJ (1993) The use of colony development for the characterization of bacterial communities in soil and on roots. Microb Ecol 27:81–97

    Google Scholar 

  • Dash M, Panda SK (2001) Salt stress induced changes in growth and enzyme activities in germinating Phaseolus muingo seeds. Biol Plant 44:587–589

    Article  CAS  Google Scholar 

  • Dick WA, Tabatabai MA (1983) Activation of soil pyrophos-phatase by metal ions. Soil Biol Biochem 15:359–363

    Article  CAS  Google Scholar 

  • Dick WA, Tabatabai MA (1984) Kinetic parameters of phosphatase in soils and organic waste materials. Soil Sci 137:7–15

    Article  CAS  Google Scholar 

  • Dick RP, Breakwell DP, Turco RF (1996) Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. Special Publication No 49. Soil Science Society America, Madison, WI, USA, pp 247–271

    Google Scholar 

  • Dick RP (1997) Soil enzyme activities as integrative indicators of soil health. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, Wellingford, pp 121–156

    Google Scholar 

  • Donegan KK, Seidler RJ (1999) Effects of transgenic plants on soil and plant microorganisms. Recent Res Devel Microbiol 3:415–424

    Google Scholar 

  • Drijber RA, Doran JW, Parkhurst AM, Lyon DJ (2000) Changes in soil microbial community structure with tillage under long-term wheat–fallow management. Soil Biol Biochem 32:1419–1430

    Article  CAS  Google Scholar 

  • Dunne C, Monne-Loccoz Y, de Bruijn FJ, O’Gara F (2000) Overproduction of an inducible extracellular serine protease improves biological control of Pythium ultimum by Stenotrophomonas maltophilia strain W81. Microbiology 146:2069–2078

    PubMed  CAS  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Doyle JD, Stotzky G (1993) Methods for the detection of changes in the microbial ecology of soil caused by the introduction of microorganisms. Microb Releases 2:63–72

    Google Scholar 

  • Egamberdiyeva D, Hoflich G (2003a) Influence of growth-promoting bacteria on the growth of wheat in different soils and temperatures. Soil Biol Biochem 35:973–978

    Article  CAS  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov SH, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9

    PubMed  CAS  Google Scholar 

  • Egamberdiyeva D, Gafurova L, Islam KR (2007) Salinity effects on irrigated soil chemical and biological properties in the Syr Darya Basin of Uzbekistan. In: Lal R, Sulaimanov M, Stewart B, Hansen D, Doraiswamy P (eds) Climate change and terrestrial C sequestration in Central Asia Taylor-Francis, New York, pp 147–162

    Chapter  Google Scholar 

  • Egamberdiyeva D, Hoflich G (2003b) The effect of associative bacteria from different climates on plant growth of pea at different soils and temperatures. Arch Agron Soil Sci 49:203–213

    Article  Google Scholar 

  • Egamberdiyeva D, Hoflich G (2004) Importance of plant growth promoting bacteria on growth and nutrient uptake of cotton and pea in semi-arid region Uzbekistan. J Arid Environ 56:293–30

    Article  Google Scholar 

  • Eivazi F, Tabatabai MA (1988) Glucosidases and galactosidases in soils. Soil Biol Biochem 20:601–606

    Article  CAS  Google Scholar 

  • Estermann EF, McLaren AD (1961) Contribution of rhizoplane organisms to the total capacity of plants to utilize organic nutrients. Plant Soil 15:243–260

    Article  CAS  Google Scholar 

  • Falchini L, Naumova N, Kuikman PJ, Bloem J, Nannipieri P (2003) CO2 evolution and denaturing gradient gel electrophoresis profiles of bacterial communities in soil following addition of low molecular weight substrates to simulate root exudation. Soil Biol Biochem 36:775–782

    Article  CAS  Google Scholar 

  • Frankenberger JWT, Arshad M (1995) Microbial synthesis of auxins. In: Frankenberger WT, Arshad M (eds) Phytohormones in soils. Marcel Dekker, New York, pp 35–71

    Google Scholar 

  • Frankenberger WTJ, Bingham FT (1982) Influence of salinity on soil enzyme activities. Soil Sci Soc Am J 46:1173–1177

    Article  CAS  Google Scholar 

  • Garcia-Gil JC, Plaza C, Senesi N, Brunetti G (2004) Effects of sewage sludge amendment on humic acids and microbiological properties of a semiarid Mediterranean soil. Biol Fertil Soils 39:320–328

    Article  CAS  Google Scholar 

  • García C, Hernández T, Costa F, Ceccanti B (1994) Biochemical parameters in soils regenerated by addition of organic wastes. Waste Manage Res 12:457–466

    Google Scholar 

  • Garcia C, Hernandez T (1996) Influence of salinity on the biological and biochemical activity of a calciorthird soil. Plant Soil 178:225–263

    Article  Google Scholar 

  • George TS, Simpson RJ, Hadobas PA, Richardson AE (2005) Expression of a fungal phytase gene in Nicotiana tabacum improves phosphorus nutrition of plants grown in amended soils. Plant Biotechnol J 3:129–140

    Article  PubMed  CAS  Google Scholar 

  • Gianfreda L, Ruggiero P (2006) Enzyme activities in soil. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil. Springer, Heidelberg, Germany, pp 257–311

    Chapter  Google Scholar 

  • Gianfreda L, Bollag J (1994) Effect of soils on behaviour of immobilized enzymes. Soil Sci Soc Am J 58:1672–1681

    Article  CAS  Google Scholar 

  • Gupta VSR, Roper MM, Kinkegaard JA, Angus JF (1994) Changes in microbial biomass and organic matter levels during the first year of modified tillage and stubble management practices on red earth. Aust J Soil Res 32:1339–1354

    Article  Google Scholar 

  • Hagen G (1990) The control of gene expression by auxin. In: Davies PJ (ed) Plant hormones and their role in plant growth and development. Kluwer Academic, The Netherlands, pp 149–163

    Google Scholar 

  • Hawes MC, Bengough G, Cassab G, Ponce G (2003) Root caps and rhizosphere. J Plant Growth Regul 21:352–367

    Article  CAS  Google Scholar 

  • Hinsinger P, Plassard C, Jaillard B (2006) The rhizosphere: a new frontier in soil biogeochemistry. J Geochem Explor 88:210–213

    Article  CAS  Google Scholar 

  • Hoflich G, Tappe E, Kuhn G, Wiehe W (1997) Einfluß associativer rhizospharenbakterien auf die nährstoffaufnahme und den ertrag von mais. Arch Acker Pfl Boden 41:323–333

    Google Scholar 

  • Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–2109

    PubMed  CAS  Google Scholar 

  • Izaguirre-Mayoral ML, Flores S, Carballo O (2002) Determination of acid phosphatases and dehydrogenase activities in the rhizosphere of nodulated legume species native to two contrasting savannah sites in Venezuela. Biol Fertil Soils 35:470–472

    Article  CAS  Google Scholar 

  • James ES, Russel LW, Mitrick A (1991) Phosphate stress response in hydroponically grown maize. Plant Soil 132:85–90

    Article  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    Article  CAS  Google Scholar 

  • Juma NG, Tabatabai MA (1988) Hydrolysis of organic phosphates by corn and soybean roots. Plant Soil 107:31–38

    Article  CAS  Google Scholar 

  • Kai M, Takazumi K, Adachi H, Wasaki J, Shinano T, Osaki M (2002) Cloning and characterization of four phosphate transporter cDNAs in tobacco. Plant Sci 163:837–846

    Article  CAS  Google Scholar 

  • Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Hass D, Defago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHAO: importance of the bacterial metabolite 2,4-diacetylphloroglucinol. Mol Plant-Microbe Interact 5:4–13

    Article  CAS  Google Scholar 

  • Klose S, Tabatabai MA (2000) Urease activity of microbial biomass in soil as affected by cropping system. Biol Fertil Soils 31:191–9

    Article  CAS  Google Scholar 

  • Kozdrój J, van Elsas JD (2000) Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches. Soil Biol Biochem 32:1405–1417

    Article  Google Scholar 

  • Ladd JN, Foster RC, Nannipieri P, Oades JM (1996) Soil structure and biological activity. In: Stotzky G, Bollag JM (eds), Soil Biochemistry vol 9. Marcel Dekker, New York, pp 23–78

    Google Scholar 

  • Landi L, Valore F, Asher J, Renella G, Falchini L, Nannipieri P (2006) Root exudates effects on the bacterial communities, CO2 evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils. Soil Biol Biochem 38:509–516

    Article  CAS  Google Scholar 

  • Lebuhn M, Hartmann A (1993) Method for the determination of indole-3-acetic acid and related compounds of L-tryptophan catabolism in soils. J Chromatogr 629:255–266

    Article  CAS  Google Scholar 

  • Lebuhn M, Heulin T, Hartmann A (1997) Production of auxin and other indolic and phenolic compounds by Paenobacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol Ecol 22:325–334

    Article  CAS  Google Scholar 

  • Li Y, Guohua M, Fanjun C, Jianhua Z, Fusuo Z (2004) Rhizosphere effect and root growth of two maize (Zea mays L.) genotypes with contrasting P efficiency at low P availability. Plant Sci 167:217–223

    Article  CAS  Google Scholar 

  • Li D, Zhu H, Liu K, Liu X, Leggewie G, Udvardi M, Wang D (2002) Purple acid phosphatases of Arabidopsis thaliana.. J Biol Chem 277:27772–27781

    Article  PubMed  CAS  Google Scholar 

  • Lindberg T, Granhall U, Tomenius H (1985) Infectivity and acetylene reduction of diazotrophic rhizosphere bacteria in wheat (Triticum aestivum) seedlings under gnotobiotic conditions. Biol Fertil Soils 1:123–129

    Article  Google Scholar 

  • Lung SC, Chan WL, Yip W, Wang L, Yeung EC, Lim BL (2005) Secretion of beta-propeller phytase from tobacco and Arabidopsis roots enhances phosphorus utilization. Plant Sci 169:341–349

    Article  CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg BJJ, Bloemberg GV (2004) Life in the rhizosphere. In: Ramos JL (ed) Pseudomonas, vol 1. Kluwer Academic/Plenum Publishers, New York, NY, pp 403–430

    Chapter  Google Scholar 

  • Matsuguchi T, Sakai M (1995) Influence of soil salinity on the populations and composition of fluorescent pseudomonads in plant rhizosphere. Soil Sci Plant Nutr 41:497–504

    Article  Google Scholar 

  • Mawdsley JL, Burns RG (1994) Inoculation of plants with Flavobacterium P25 results in altered rhizosphere enzyme activities. Soil Biol Biochem 26:871–882

    Article  CAS  Google Scholar 

  • Messini A, Favilli F (1990) Calcium oxalate decomposing microorganisms a microbial group of the rhizosphere of forest plants. Ann Microbiol Enzimol 40:93–102

    CAS  Google Scholar 

  • Muratova A, Pozdnyakova N, Golubev S, Wittenmayer L, Makarov O, Merbach W, Turkovskaya O (2009) Oxidoreductase activity of Sorghum root exudates in a phenanthrene-contaminated environment. Chemosphere 74:1031–1036

    Article  PubMed  CAS  Google Scholar 

  • Mobley HL, Hausinger RP (1989) Microbial ureases: significance, regulation, and molecular characterization. Microbiol Rev 53:85–108

    PubMed  CAS  Google Scholar 

  • Mozafar A, Duss F, Oertli JJ (1992) Effect of Pseudomonas fluorescens on the root exudates of 2 tomato mutants differently sensitive to Fe chlorosis. Plant Soil 144:167–176

    Article  CAS  Google Scholar 

  • Nannipieri P, Ceccanti B, Grego S (1990) Ecological significance of the biological activity in soil. In: Bollag JM, Stotzky G (eds) Soil biochemistry, vol 6. Martin Dekker, New York, pp 293–366

    Google Scholar 

  • Nannipieri P, Sequi P, Fusi P (1996) Humus and enzyme activity. In: Piccolo A (ed) Humic substances in terrestrial ecosystems. Elsevier, New York, pp 293–328

    Chapter  Google Scholar 

  • Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick RP (eds) Enzymes in the environment. Marcel Dekker, New York, USA, pp 1–33

    Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Nardi S, Concheri G, Pizzeghello D, Sturaro A, Rella R, Parvoli G (2000) Soil organic matter mobilization by root exudates. Chemosphere 5:653–658

    Article  Google Scholar 

  • Nannipieri P (2007) Functions of microbial communities and their importance in soil. CAB reviews: perspective in agriculture, veterinary science, nutrition and natural resources. doi:

    Google Scholar 

  • Naseby DC, Lynch JM (2002) Enzymes and microorganisms in the rhizosphere. In: Burns RG, Dick RP (eds) Enzymes in the environment, activity, ecology and applications. Marcel Dekker, New York, pp 109–123

    Google Scholar 

  • Naseby DC, Lynch JM (1997) Rhizosphere soil enzymes as indicators of perturbations caused by enzyme substrate addition and inoculation of a genetically modified strain of Pseudomonas fluorescens on wheat seed. Soil Biol Biochem 29:1353–1362

    Article  CAS  Google Scholar 

  • Naseby DC, Lynch JM (1998) Impact of wild-type and genetically modified Pseudomonas fluorescens on soil enzyme activities and microbial population structure in the rhizosphere of pea. Mol Ecol 7:617–625

    Article  CAS  Google Scholar 

  • Neumann G, Römheld V (2007) The release of root exudates as affected by the plant physiological status. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. biochemistry and organic substances at the soil-plant interface. Taylor and Francis Group, Boca Raton, FL, pp 23–72

    Chapter  Google Scholar 

  • Nielsen P, Sorensen J (1997) Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumillus strains from barley rhizosphere. FEMS Microbiol Ecol 22:183–192

    Article  CAS  Google Scholar 

  • Nielson MN, Sorensen J (1999) Chitinolytic activity of Pseudomonas fluorescens isolates from barley and sugar beet rhizosphere. FEMS Microbiol Ecol 30:217–227

    Article  Google Scholar 

  • Pal KK, McSpadden Gardener B (2006) Biological control of plant pathogens. The Plant Health Instructor. doi:

    Google Scholar 

  • Pathak H, Rao DLN (1998) Carbon and nitrogen mineralization from added organic matter in saline and alkali soils. Soil Biol Biochem 30:695–702

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  PubMed  CAS  Google Scholar 

  • Pilar MC, Ortega N, Perez-Mateos M, Busto MD (2009) Alkaline phosphatase−polyresorcinol complex: characterization and application to seed coating. J Agric Food Chem 57:1967–1974

    Article  PubMed  CAS  Google Scholar 

  • Qian JH, Doran JW, Walters DT (1997) Maize plant contributions to root zone available carbon and microbial transformations of nitrogen. Soil Biol Biochem 29:1451–1462

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Reboreda R, Caçador I (2008) Enzymatic activity in the rhizosphere of Spartina maritima: potential contribution for phytoremediation of metals. Mar Environ Res 65:77–84

    Article  PubMed  CAS  Google Scholar 

  • Renella G, Egamberdiyeva D, Landi L, Mench M, Nannipieri P (2006) Microbial activity and hydrolase activities during decomposition of root exudates released by an artificial root surface in Cd-contaminated soils. Soil Biol Biochem 38:702–708

    Article  CAS  Google Scholar 

  • Renella G, Landi L, Valori F, Nannipieri P (2007) Microbial and hydrolase activity after release of low molecular weight organic compounds by a model root surface in a clayey and a sandy soil. Appl Soil Ecol 36:124–129

    Article  Google Scholar 

  • Renella G, Mench M, Landi L, Nannipieri P (2005) Microbial activity and hydrolase synthesis in long-term Cd-contaminated soils. Soil Biol Biochem 37:133–139

    Article  CAS  Google Scholar 

  • Richardson JL, Brinson MM (2001) Wetlandsoils and the hydrogeomorphic classification of wetlands. In: Richardson JL, Vepraskas MJ (eds) Wetlands soils: genesis, hydrology, landscapes, and classification. CRC Press LLC, Boca Raton, FL, pp 209–227

    Google Scholar 

  • Shirokova Y, Forkutsa I, Sharafutdinova N (2000) Use of electrical conductivity instead of soluble slats for soil salinity monitoring in Central Asia. Irrig Drain Syst 14:199–205

    Article  Google Scholar 

  • Sipilä TP, Keskinen AK, Akerman ML, Fortelius C, Haahtela K, Yrjälä K (2008) High aromatic ring-cleavage diversity in birch rhizosphere: PAH treatment-specific changes of I.E.3 group extradiol dioxygenases and 16S rRNA bacterial communities in soil. ISME J 9:968–981

    Article  CAS  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–23

    Article  PubMed  CAS  Google Scholar 

  • Tabatabai MA (1982) Soil enzymes. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2. American Society of Agronomy, Soil Science Society of America, Madison, WI, pp 903–947

    Google Scholar 

  • Tarafdar JC, Jungk A (1987) Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol Fertil Soils 3:199–204

    Article  CAS  Google Scholar 

  • Tyler G, Balsberg Pahlsson AM, Bengtsson G, Baath E, Tranvik M (1989) Heavy-metal ecology of terrestrial plants, micro-organisms invertebrates. Water Air Soil Pollut 47:189–215

    Article  CAS  Google Scholar 

  • Timmusk E, Niccander B, Granhall U, Tillberg E (1999) Cytokinin production by Bacillus polymyxa.. Soil Biol Biochem 31:1847–1852

    Article  CAS  Google Scholar 

  • Tomasi N, Weisskopf L, Renella G, Landi L, Pinton R, Varanini Z, Nannipieri P, Torrent J, Martinoia E, Cesco S (2008) Flavonoids of white lupin roots participate in phosphorus mobilization from soil. Soil Biol Biochem 40:1971–1974

    Article  CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis JM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    Article  PubMed  CAS  Google Scholar 

  • Uren NC (2007) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R et al (eds) The rhizosphere, 2nd edn. CRC, Boca Raton, FL, pp 1–22

    Chapter  Google Scholar 

  • Viterbo A, Ramot O, Chemin L, Chet I (2002) Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens. Antonie Leeuwenhoek 81:549–556

    Article  PubMed  CAS  Google Scholar 

  • Wen F, Van Etten HD, Tsaprailis G, Hawes MC (2007) Extracellular proteins in pea root tip and border cell exudates. Plant Physiololgy 143:773–783

    Article  CAS  Google Scholar 

  • Wright AL, Reddy KR (2001) Phosphorus loading effects on extracellular enzyme activity in everglades wetland soil. Soil Sci Soc Am J 65:588–595

    Article  CAS  Google Scholar 

  • Yadav RS, Tarafdar JC (2001) Influence of organic and inorganic phosphorous supply on the maximum secretion of acid phosphatise by plants. Biol Fertil Soils 34:140–143

    Article  CAS  Google Scholar 

  • Yang Z, Liu S, Zheng D, Feng S (2006) Effects of cadmium, zinc and lead on soil enzyme activities. J Environ Sci 18:1135–1141

    Article  Google Scholar 

  • Zahir ZA, Malik MAR, Arshad M (2001) Soil enzymes research: a review. Online J Biol Sci 1:299–307

    Article  Google Scholar 

  • Zahran HH (1997) Diversity, adaptation and activity of the bacterial flora in saline environments. Biol Fertil Soils 25:211–223

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilfuza Egamberdieva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Egamberdieva, D., Renella, G., Wirth, S., Islam, R. (2010). Enzyme Activities in the Rhizosphere of Plants. In: Shukla, G., Varma, A. (eds) Soil Enzymology. Soil Biology, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14225-3_8

Download citation

Publish with us

Policies and ethics