Skip to main content

Agricultural and Ecological Significance of Soil Enzymes: Soil Carbon Sequestration and Nutrient Cycling

  • Chapter
  • First Online:
Soil Enzymology

Part of the book series: Soil Biology ((SOILBIOL,volume 22))

Abstract

Agricultural and ecological significance of soil enzymes have been progressively expanded since the first report on soil enzymes about a century ago. In terms of soil carbon and nutrient sequestration and nutrient cycling, several classes of oxidative and hydrolytic enzymes have been acknowledged as indicators or predictors of organic carbon decomposition and nutrient mineralization. This chapter highlights the current knowledge on soil enzymes that can be used to learn about soil carbon and nutrient processes, principles by which microbial community may regulate the production and thus the activity of soil enzymes, and implications that are likely relevant to ecosystem responses to management and global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alef K, Nannipieri P (1995) Cellulase activity. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic, San Diego, CA, pp 345–349

    Google Scholar 

  • Alef K, Nannipieri P, Trazar-Cepeda C (1995) Phosphatase activity. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic, San Diego, CA, pp 335–344

    Google Scholar 

  • Allison SD, Vitousek PM (2005) Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol Biochem 37:937–944

    Article  CAS  Google Scholar 

  • Allison SD, Czimczik CI, Treseder KK (2008) Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Global Change Biol 14:1156–1168

    Article  Google Scholar 

  • Bandick AK, Dick RP (1999) Filed management effects on soil enzyme activities. Soil Biol Biochem 31:1471–1479

    Article  CAS  Google Scholar 

  • Burke M, Cairney JWG (2002) Laccases and other polyphenol oxidases in ecto- and ericoid mycorrhizal fungi. Mycorrhiza 12:105–116

    Article  PubMed  CAS  Google Scholar 

  • Burns RG (1982) Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biol Biochem 14:423–427

    Article  CAS  Google Scholar 

  • Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81:2359–2365

    Article  Google Scholar 

  • Chróst RJ (1991) Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In: Chróst RJ (ed) Microbial enzymes in aquatic environments. Springer, New York, pp 29–59

    Chapter  Google Scholar 

  • Claus H (2004) Laccases: structure, reactions, distribution. Micron 35:93–96

    Article  PubMed  CAS  Google Scholar 

  • Craine JM, Morrow C, Fierer N (2007) Microbial nitrogen limitation increases decomposition. Ecology 88:2105–2113

    Article  PubMed  Google Scholar 

  • Criquet S, Tagger S, Vogt G, Iacazio G, Le Petit J (1999) Laccase activity of forest litter. Soil Biol Biochem 31:1239–1244

    Article  CAS  Google Scholar 

  • DeForest JL, Zak DR, Pregitzer KS, Burton AJ (2004) Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest. Soil Biol Biochem 36:965–971

    Article  CAS  Google Scholar 

  • Dick RP (1992) A review: long-term effects of agricultural systems on soil biochemical and microbial parameters. Agr Ecosyst Environ 40:25–36

    Article  CAS  Google Scholar 

  • Dick RP, Rasmussen PE, Kerle EA (1988) Influence of long-term residue management on soil enzyme activities in relation to soil chemical properties of a wheat-fallow system. Biol Fertil Soils 6:159–164

    Article  CAS  Google Scholar 

  • Dodor DE, Tabatai MA (2007) Arylamidase activity as an index of nitrogen mineralization in soils. Commun Soil Sci Plan 38:2197–2207

    Article  CAS  Google Scholar 

  • Ekenler M, Tabatabai MA (2002) Beta-glucosaminidase activity of soils: effect of cropping systems and its relationship to nitrogen mineralization. Biol Fertil Soils 36:367–376

    Article  CAS  Google Scholar 

  • Ekenler M, Tabatabai MA (2004) Beta-glucosaminidase activity as an index of nitrogen mineralization in soils. Commun Soil Sci Plan 35:1081–1094

    Article  CAS  Google Scholar 

  • Endo K, Hayaski Y, Hibi T, Hosono K, Beppu T, Ueda K (2003) Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus. J Biochem 133:671–677

    Article  PubMed  CAS  Google Scholar 

  • Fenner N, Freeman C, Reynold B (2005a) Observations of a seasonally shifting thermal optimum in peatland carbon-cycling processes: implications for the global carbon cycle and soil enzyme methodologies. Soil Biol Biochem 37:1814–1821

    Article  CAS  Google Scholar 

  • Fenner N, Freeman C, Reynolds B (2005b) Hydrological effects on the diversity of phenolic degrading bacteria in a peatland: implications for carbon cycling. Soil Biol Biochem 37:1277–1287

    Article  CAS  Google Scholar 

  • Fenner N, Freeman C, Lock MA, Harmens H, Reynolds B, Sparks T (2007) Interactions between elevated CO2 and warming could amplify DOC exports from peatland catchments. Environ Sci Technol 41:3146–3152

    Article  PubMed  CAS  Google Scholar 

  • Finzi AC, Sinsabaugh RL, Long TM, Osgood MP (2006) Microbial community responses to atmospheric carbon dioxide enrichment in a warm-temperate forest. Ecosystems 9:215–226

    Article  CAS  Google Scholar 

  • Fog K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev 63:433–462

    Article  Google Scholar 

  • Freeman C, Liska G, Ostle NJ, Lock MA, Reynolds B, Hudson J (1996) Microbial activity and enzymic decomposition processes following peatland water table drawdown. Plant Soil 180:121–127

    Article  CAS  Google Scholar 

  • Freeman C, Ostle N, Kang H (2001a) An enzymic ‘latch’ on a global carbon storage. Nature 409:149

    Article  PubMed  CAS  Google Scholar 

  • Freeman C, Evans CD, Monteith DT, Reynolds B, Fenner N (2001b) Export of organic carbon from peat soils. Nature 412:785

    Article  PubMed  CAS  Google Scholar 

  • Freeman C, Olstle NJ, Fenner N, Kang H (2004) A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biol Biochem 36:1663–1667

    Article  CAS  Google Scholar 

  • Gallo ME, Lauber CL, Cabaniss SE, Waldrop MP, Sinsabaugh RL, Zak DR (2005) Soil organic matter and litter chemistry response to experimental N deposition in northern temperate deciduous forest ecosystems. Global Change Biol 11:1514–1521

    Article  Google Scholar 

  • Grandy AS, Neff JC, Weintrau MN (2007) Carbon structure and enzyme activities in alpine and forest ecosystems. Soil Biol Biochem 39:2701–2711

    Article  CAS  Google Scholar 

  • Hammel KE (1997) Fungal degradation of lignin. In: Cadish G, Giller KE (eds) Driven by nature. CAB International, London, pp 33–45

    Google Scholar 

  • Henriksen TM, Breland TA (1999) Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil. Soil Biol Biochem 31:1121–1134

    Article  CAS  Google Scholar 

  • Henry HA, Juarez JD, Field CB, Vitousek PM (2005) Interactive effects of elevated CO2, N deposition and climate change on extracellular enzyme activity and soil density fractionation in a California annual grassland. Global Change Biol 11:1808–1815

    Article  Google Scholar 

  • Hullo MF, Moszer I, Danchin A, Martin-Verstraete I (2001) CoA of Bacillus subtilis is a copper-dependent laccase. J Bacteriol 183:5426–5430

    Article  PubMed  CAS  Google Scholar 

  • Iyyemperumal K, Shi W (2008) Soil enzyme activities in two forage systems following application of different rates of swine lagoon effluent or ammonium nitrate. Appl Soil Ecol 38:128–136

    Article  Google Scholar 

  • Kang H, Freeman C (1999) Phosphatase and arylsulphatase activities in wetland soils: annual variation and controlling factors. Soil Biol Biochem 31:449–454

    Article  CAS  Google Scholar 

  • Keeler BL, Hobbie SE, Kellogg LE (2009) Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition. Ecosystems 12:1–15

    Article  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic combustion: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  PubMed  CAS  Google Scholar 

  • Ladd JN (1978) Origin and range of enzymes in soil. In: Burns RG (ed) Soil enzymes. Academic, New York, pp 51–96

    Google Scholar 

  • Leinweber P, Jandl G, Baum C, Eckhardt KU, Kandeler E (2008) Stability and composition of soil organic matter control respiration and soil enzyme activities. Soil Biol Biochem 40:1496–1505

    Article  CAS  Google Scholar 

  • Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Noulet N, Rydin H, Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications – a synthesis. Biogeosciences 5:1475–1491

    Article  CAS  Google Scholar 

  • Lipson DA, Wilson RF, Oechel WC (2005) Effects of elevated atmospheric CO2 on soil microbial biomass, activity and diversity in a charparral ecosystem. Appl Environ Microb 71:8573–8580

    Article  CAS  Google Scholar 

  • Matocha CJ, Haszler GR, Grove JH (2004) Nitrogen fertilization suppresses soil phenol oxidase enzyme activity in no-tillage systems. Soil Sci 169:708–714

    Article  CAS  Google Scholar 

  • McLatchey GP, Reddy KR (1998) Regulation of organic matter decomposition and nutrient release in a wetland soil. J Environ Qual 27:1268–1274

    Article  CAS  Google Scholar 

  • Moorhead DL, Sinsabaugh RL (2006) A theoretical model of litter decay and microbial interaction. Ecol Monogr 76:151–174

    Article  Google Scholar 

  • Olander LP, Vitousek PM (2000) Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry 49:175–190

    Article  CAS  Google Scholar 

  • Paul EA, Clark FE (1996) Soil microbiology and biochemistry. Academic, San Diego, CA

    Google Scholar 

  • Penton CR, Newman S (2007) Enzyme activity responses to nutrient loading in subtropical wetlands. Biogeochemistry 84:83–98

    Article  CAS  Google Scholar 

  • Pind A, Freeman C, Lock MA (1994) Enzymatic degradation of phenolic materials in peatlands – measurement of phenol oxidase activity. Plant Soil 159:227–231

    Article  CAS  Google Scholar 

  • Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002) The effects of long-term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34:1309–1315

    Article  CAS  Google Scholar 

  • Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–563

    Article  CAS  Google Scholar 

  • Shackle VJ, Freeman C, Reynolds B (2000) Carbon supply and the regulation of enzyme activity in constructed wetlands. Soil Biol Biochem 32:1935–1940

    Article  CAS  Google Scholar 

  • Shi W, Dell E, Bowman D, Iyyemperumal K (2006) Soil enzyme activities and organic matter composition in a turfgrass chronosequence. Plant Soil 288:285–296

    Article  CAS  Google Scholar 

  • Sinsabaugh RL (1994) Enzymic analysis of microbial pattern and process. Biol Fertil Soils 187:69–74

    Article  Google Scholar 

  • Sinsabaugh RL, Linkins AE (1993) Statistical modeling of litter decomposition from integrated cellulase activity. Ecology 74:1594–1597

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Moorhead DL (1994) Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorous control of litter decomposition. Soil Biol Biochem 26:1305–1311

    Article  Google Scholar 

  • Sinsabaugh RL, Antibus RK, Linkins AE, McClaugherty CA, Rayburn L, Repert D, Weiland T (1992) Wood decomposition over a 1st-order watershed – mass-loss as a function of lignocellulase activity. Soil Biol Biochem 24:743–749

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Antibus RK, Linkins AE, MaClaugherty CA, Rayburn L, Repert D, Weiland T (1993) Wood decomposition – nitrogen and phosphorus dynamics in relation to extracellular enzyme activity. Ecology 74:1586–1593

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Gallo ME, Lauber C, Waldrop MP, Zak DR (2005) Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition. Biogeochemistry 75:201–215

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Causack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, Stursova M, Takacs-Vesbach C, Wallenstein MD, Zak DR, Zeglin LH (2008) Stoichiometry of soil enzyme activity at global scale. Ecol Lett 11:1252–1264

    PubMed  Google Scholar 

  • Smucker RA, Kim CK (1987) Chitinase induction in an estuarine ecosystems. In: Llewellyn GC, O’Rear CE (eds) Biodegradation research. Plenum, New York, pp 347–355

    Google Scholar 

  • Speir TW, Ross DJ (1978) Soil phosphatase and sulphatase. In: Burns RG (ed) Soil enzymes. Academic, New York, pp 197–250

    Google Scholar 

  • Stursova M, Sinsabaugh RL (2008) Stabilization of oxidative enzymes in desert soil may limit organic matter accumulation. Soil Biol Biochem 40:550–553

    Article  CAS  Google Scholar 

  • Stursova M, Crenshaw CL, Sinsabaugh RL (2006) Microbial responses to long-term N deposition in a semiarid grassland. Microb Ecol 51:90–98

    Article  PubMed  Google Scholar 

  • Tabatabai MA (1994) Soil enzymes. In: Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A (eds) Methods of soil analysis, part 2 – microbiological and biochemical properties. Soil Science Society of America Inc, Wisconsin, pp 775–833

    Google Scholar 

  • Toberman H, Artz FC, RRE ECD, Fenner N (2008a) Impeded drainage stimulates extracellular phenol oxidase activity in riparian peat cores. Soil Use Manage 24:357–365

    Article  Google Scholar 

  • Toberman H, Evans CD, Freeman C, Fenner N, White M, Emmett BA, Artz RRE (2008b) Summer drought effects upon soil and litter extracellular phenol oxidase activity and soluble carbon release in an upland Calluna heathland. Soil Biol Biochem 40:1519–1532

    Article  CAS  Google Scholar 

  • Waldrop MP, Zak DR, Sinsabaugh RL, Gallo M, Lauber C (2004) Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol Appl 14:1172–1177

    Article  Google Scholar 

  • Wang WJ, Baldock JA, Dalal RC, Moody PW (2004) Decomposition dynamics of plant materials in relation to nitrogen availability and biochemistry determined by NMR and wet-chemical analysis. Soil Biol Biochem 36:2045–2058

    Article  CAS  Google Scholar 

  • Zeglin LH, Stursova M, Sinsabaugh RL, Collins SL (2007) Microbial responses to nitrogen addition in three contrasting grassland ecosystems. Oecologia 154:349–359

    Article  PubMed  Google Scholar 

  • Zibliske LM, Bradford JM (2007) Oxygen effects on carbon, polyphenols, and nitrogen mineralization potential in soil. Soil Sci Soc Am J 71:133–139

    Article  Google Scholar 

  • Zou X, Binkley D, Caldwell BA (1995) Effects of dinitrogen-fixing trees on phosphorus biogeochemical cycling in contrasting forests. Soil Sci Soc Am J 59:1452–1458

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shi, W. (2010). Agricultural and Ecological Significance of Soil Enzymes: Soil Carbon Sequestration and Nutrient Cycling. In: Shukla, G., Varma, A. (eds) Soil Enzymology. Soil Biology, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14225-3_3

Download citation

Publish with us

Policies and ethics