Skip to main content

Behavior of Enzymatic Activity in Chilean Volcanic Soil and Their Interactions with Clay Fraction

  • Chapter
  • First Online:
Soil Enzymology

Part of the book series: Soil Biology ((SOILBIOL,volume 22))

Abstract

Volcanic soil, Andisols, and Ultisols comprise clays with physico-chemical differences, which is crucial for the immobilization of enzymes and their catalytic properties. The properties of volcanic soils related to enzyme immobilization are described. Specifically, the characteristics of allophane, the predominant clay in Andisols, and kaolinite, the most representative clay in Ultisols, are considered. The mechanisms by which enzymes are immobilized in Andisol and Ultisol clays are described, with particular emphasis on acid phosphatase. In addition, the values of enzyme activities in volcanic soil affected by management practices such as tillage system, application of herbicides, and manganese (Mn) and molybdenum (Mo) micronutrient application are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison S (2006) Soil minerals and humic acids alter enzyme stability: implications for ecosystem processes. Biogeochemistry 81:361–373

    Article  CAS  Google Scholar 

  • Alvear M, Pino M, Castillo C, Trasar-Cepeda C, Gil-Sotres F (2006) Effect of non-tillage on some biological activities in an Alfisol from Southern Chile. J Soil Sci Plant Nutr 6:38–53

    Google Scholar 

  • Alvear M, Urra C, Huaiquilao R, Astorga M, Reyes F (2007) Actividades biológicas y estabilidad de agregados en un suelo del bosque templado chileno bajo dos etapas sucesionales y cambios estacionales. R C Suelo Nutr Veg 7(3):38–50, J Soil Sc Plant Nutr 7(3):38–50

    Google Scholar 

  • Aomine S, Wada K (1962) Differential weathering of volcanic ash and pumice resulting in formation of hydrated halloysite. Am Mineral 47:1024–1048

    CAS  Google Scholar 

  • Bates T, Hildebrand F, Swineford A (1950) Morphology and structure of endelite and halloysite. Am Mineral 35:463–484

    CAS  Google Scholar 

  • Besoaín E (1985) Los suelos. In: Tosso J (ed) Suelos Volcánicos de Chile. Instituto de Investigaciones Agropecuarias (INIA), Santiago, pp 23–106

    Google Scholar 

  • Boudot JP, Hadj BAB, Chrone T (1986) Carbon mineralization in Andosols and aluminium-rich highland soils. Soil Biol Biochem 18:457–461

    Article  CAS  Google Scholar 

  • Bozzo G, Raghothama K, Plaxton W (2002) Purification and characterization of two secreted purple acid phosphatase isozymes from phosphate-starved tomato (Lycopersicon esculentum) cell cultures. Eur J Biochem 269:6278–6286

    Article  PubMed  CAS  Google Scholar 

  • Chevallier T, Woignier T, Toucet J, Blanchart E, Dieudonné P (2008) Fractal estructure in natural gels: effect on carbon sequestration in volcanic soil. Sol-Gel Sci Technnol 48:231–238

    Article  CAS  Google Scholar 

  • Churchman G, Davy T, Aylmore L, Gilkes R, Self P (1995) Characteristics of fine pores in some halloysites. Clay Miner 30:89–98

    Article  CAS  Google Scholar 

  • Denaix L, Lamy I, Botero JY (1999) Structure and affinity towards Cd2+, Cu2+, Pb2+ of synthetic colloidal amorphous aluminosilicates and their precursors. Colloid Surf A 158:315–325

    Article  CAS  Google Scholar 

  • Dietler G, Aubert C, Cannell DS, Wiltzius LP (1986) Gelation of colloidal silica. Phys Rev Lett 57:3117

    Article  PubMed  CAS  Google Scholar 

  • Dodor D, Hwang H, Ekunwe S (2004) Oxidation of anthracene and benzo[a]pyrene by immobilized laccase from Trametes versicolor. Enzym Microb Technol 35:210–217

    Article  CAS  Google Scholar 

  • Eggers DK, Valentine JS (2001) Molecular confinement influences protein structure and enhances thermal protein stability. Protein Sci 10:250–261

    Article  PubMed  CAS  Google Scholar 

  • Emmerling A, Fricke J (1992) Small angle scattering and the structure of aerogels. J Non-Cryst Solids 145:113–120

    Article  CAS  Google Scholar 

  • Farmer VC, Smith BFL, Tait JM (1977) Alteration of allophane and imogolite by alkaline digestion. Clay Miner 12:195–198

    Article  CAS  Google Scholar 

  • Feller C, Albrecht A, Blanchart E, Cabidoche YM, Chevallier T, Hartmann C, Eschenbrenner V, Larre-Larrouy MC, Ndandou JF (2001) Soil organic carbon sequestration in tropical areas. General considerations and analysis of some edafic determinants for Lesser Antilles soils. Nutr Cycl Agroecosys 61:19–31

    Article  Google Scholar 

  • Fieldes M (1955) Allophane and related mineral colloids. N Z J Sci Tech 37:336–350

    Google Scholar 

  • Fiorito T, Icoz I, Stotzky G (2008) Adsorption and binding of the transgenic plant proteins, human serum albumin, β-glucuronidase, and Cry3Bb1, on montmorillonite and kaolinite: microbial utilization and enzymatic activity of free and clay-bound proteins. Appl Clay Sci 39:142–150

    Article  CAS  Google Scholar 

  • Galindo G, Escudey M (1985) Interacciones superficie-solución en suelos volcánicos y sus componentes. In: Tosso J (ed) Suelos Volcánicos de Chile. Instituto de Investigación Agropecuaria (INIA). Ministerio de Agricultura, Santiago, Chile, pp 303–333

    Google Scholar 

  • Gianfreda L, Bollag JM (1994) Effect of soils on the behavior of immobilized enzymes. Soil Sci Soc Am J 58:1672–1681

    Article  CAS  Google Scholar 

  • Gianfreda L, Scarfi MR (1991) Enzyme stabilization: state of the art. Mol Cell Biochem 199:97–128

    Google Scholar 

  • Gianfreda L, Rao MA, Saccomandi F, Sannino F, Violante A (2002) Enzymes in soil: properties, behavior and potential applications. In: Violante A, Huang PM, Bollag JM, Gianfreda L (eds) Soil mineral-organic matter-microorganism interactions and ecosystem health. Development in soil science 28B. Elsevier, London, pp 301–328

    Chapter  Google Scholar 

  • Gill I (2001) Bio-doped nanocomposite polymers: sol-gel bioencapsulates. Chem Mater 13:3404–3421

    Article  CAS  Google Scholar 

  • Huang Q, Shindo H (2000) Effects of copper on the kinetics of free and immobilized acid phosphatase. Soil Biol Biochem 32:1885–1892

    Article  CAS  Google Scholar 

  • Huang Q, Liang W, Cai P (2005) Adsorption, desorption and activities of acid phosphatase on various colloidal particles from an Ultisol. Colloid Surf B 45:209–214

    Article  CAS  Google Scholar 

  • Jara A, Violante A, Pigna M, Mora M (2006) Mutual interactions of Sulfate, oxalate, citrate, and phosphate on synthetic and natural allophanes. Soil Sci Soc Am J 70:337–346

    Article  CAS  Google Scholar 

  • Kelleher BP, Simpson AJ, Willeford OK, Simpson MJ, Stout R, Rafferty A, Kingery WL (2004) Acid phosphatase interactions with organo-mineral complexes: influence on catalytic activity. Biogeochemistry 71:285–297

    Article  CAS  Google Scholar 

  • López R (2006) Evaluación del efecto de molibdeno sobre algunos parámetros bioquímicos del suelo y la planta en andisoles del sur de Chile Tesis para optar al grado de Doctor en Ciencias de Recursos Naturales. Universidad de La Frontera, Temuco, Chile

    Google Scholar 

  • López R, Alvear M, Gianfreda L, Mora M (2007) Molybdenum availability in Andisols and its effect on biological parameters of soils and red clover (Trifolium pratense L.). Soil Sci 172(11):913–924

    Google Scholar 

  • López R, Rosas A (2008) Effect of acid phosphatase immobilized in allophanic clay on P availability in soil. J Soil Sci Plant Nutr 8:201–202

    Google Scholar 

  • López R, Rosas A, Rao M, Mora ML, Alvear M, Gianfreda L (2007) Manganese and molyldenum affect acid phophatases from potato. Acata Agr Scand BS P 57:65–73

    Google Scholar 

  • Lozzi I, Calamai L, Fusi P, Bosetto M, Stotzky G (2001) Interaction of horseradish peroxidase with montmorillonite homoionic to Na+and Ca2+: effects on enzymatic activity and microbial degradation. Soil Biol Biochem 33:1021–1028

    Article  CAS  Google Scholar 

  • Luckarift HR, Spain JC, Naik RR, Stone M (2004) Enzyme immobilization in a biomimetic silica support. Nat Biotechnol 22:211–213

    Google Scholar 

  • Matus F, Garrido E, Sepúlveda N, Cárcamo I, Panichini M, Zagal E (2008) Relationship between extractable Al and organic C in volcanic soil of Chile. Geoderma 148:180–188

    Article  CAS  Google Scholar 

  • Mayer LM, Schick LL, Hardy K, Wagai R, McCarthy J (2004) Organic matter content of small mesopores in sediments and soils. Geochim Cosmochim Acta 68:3863–3872

    Article  CAS  Google Scholar 

  • Olczack M, Morawiecka B, Watorek W (2003) Plant purple acid phosphatases-genes, structures and biological function. Acta Biochim Pol 50:1245–1257

    Google Scholar 

  • Parfitt RL (1990) Allophane in New Zealand – a review. Aust J Soil Res 28:343–360

    Article  CAS  Google Scholar 

  • Parfitt RL, Yuan G, Theng BKG (1999) A 13C-NMR study of the interactions of soil organic matter with aluminium and allophane in podzols. Eur J Soil Sci 50:695–700

    Article  CAS  Google Scholar 

  • Rao MA, Gianfreda L (2000) Properties of acid phosphatase-tannic acid complexes formed in the presence of Fe and Mn. Soil Biol Biochem 32:1921–1926

    Article  CAS  Google Scholar 

  • Rao MA, Gianfreda L, Palmiero F, Violante A (1996) Interaction of acid phosphatase with clays, organic molecules and organo-mineral complexes. Soil Sci 11:751–760

    Article  Google Scholar 

  • Rao MA, Violante A, Gianfreda L (2000) Interaction of acid phosphatase with clays, organic molecules and organo-mineral complexes: kinetics and stability. Soil Biol Biochem 32:1007–1014

    Article  CAS  Google Scholar 

  • Redel Y, Rubio R, Rouanet J, Borie F (2007) Phosphorus bioavailability affected by tillage and crop rotation on a Chilean volcanic derived Ultisol. Geoderma 139:388–396

    Article  CAS  Google Scholar 

  • Redel Y, Rubio R, Godoy R, Borie F (2008) Phosphorus fractions and phosphatase activity in an Andisol under different forest ecosystems. Geoderma 145:216–221

    Article  CAS  Google Scholar 

  • Reetz MT, Tielman P, Wisenhöfer W, Könen W, Zonta A (2003) Second generation sol-gel encapsulated lipases: robust heterogeneous biocatalysts. Adv Synth Catal 345:717–728

    Article  CAS  Google Scholar 

  • Rosas A (2006) Evaluación del efecto del manganeso sobre parámetros bioquímicos de la planta y del suelo en sistemas modelo. Tesis para optar al grado de Doctor en Ciencias de Recursos Naturales. Universidad de La Frontera, Temuco, Chile

    Google Scholar 

  • Rosas A, Mora M, Jara A, López R, Rao M, Gianfreda L (2008) Catalytic of acid phosphatase immobilized on natural supports in the presence of mangase or molybdenum. Geoderma 145:77–83

    Article  CAS  Google Scholar 

  • Schaeffer W, Keefer KD (1986) Structure of Random Porous Materials: Silica Aerogel. Phys Rev Lett 56:2199–2202

    Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Schwertmann U, Taylor RM (1989) Iron oxides. In: Dixon JB, Weld SB (eds) Minerals in soil environments. Soil Science Society of America, Madison, WI, pp 379–438

    Google Scholar 

  • Shchipunov YA, Karpenko TY, Bakunina IY, Burtseva YV, Zvyagintseva TN (2004) A New precursor for the immobilization of enzymes incide sol-gel derived hibrid silica nanocomposites containing polysaccharides. J Biochem Bioph Meth 58:25–38

    Article  CAS  Google Scholar 

  • Shindo H, Watanabe D, Onaga T, Urakawa M, Nakahara O, Huang Q (2002) Adsorption, activity and stability of acid phosphatase as influenced by selected inorganic soil components. Soil Sci Plant Nutr 48:763–767

    Article  CAS  Google Scholar 

  • Sieffermann G, Millot G (1969) Equatorial and tropical weathering of recent basalts from cameroun allophanes, halloysita, metahalloysita, kaolinite and gibbsite. Intern Clay Conf 1:417–430

    Google Scholar 

  • Sparks DL (1995) Environmental soil chemistry. Academic, San Diego

    Google Scholar 

  • Stauton S, Quiquampoix H (1994) Adsorption and conformation of bovine serum albumin on montmorillonite: Modification of the balance between hydrophobic and electrostatic interactions by protein methylation and pH variation. J Colloid Interf Sci 166:89–94

    Article  Google Scholar 

  • Tso S, Chen Y (1997) Isolation and characterization of a group III isozyme of acid phosphatase from rice plants. Bot Bull Acad Sinica 38:245–250

    CAS  Google Scholar 

  • Vacher R, Woignier T, Pelous J (1988) Structure and self-similarity of silica aerogels. Phy Rev B 37:6500–6503

    Article  CAS  Google Scholar 

  • Violante A, Krishnamurti GSR, Huang PM (2002) Impact of organic substances on the formation of metal oxides in soil environments. In: Huang PM (ed) Interactions between soil particles and microorganism and their impact on the terrestrial environment. Wiley, New York, pp 133–188

    Google Scholar 

  • Wada KJ (1985) The distinctive properties of Andosols. Springer, Heidelberg

    Google Scholar 

  • Wada K (1989) Allophane and immogolite. In: Dixon JB, Weld SB (eds) Minerals in soil environments. Soil Science Society of America, Madison, WI, pp 1051–1087

    Google Scholar 

  • Wang WJ, Dalal RC, Moody PW, Smith CJ (2003) Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biol Biochem 35:273–284

    Article  CAS  Google Scholar 

  • Wei Y, Xu J, Feng Q, Lin M, Dong H, Zhang W, Wang C (2001) A novel method for enzyme immobilization: direct encapsulation of acid phosphatase in nanoporus silica host materials. J Nanosci Nanotechnol 1:83–93

    Article  PubMed  CAS  Google Scholar 

  • Woignier T, Braudeau E, Doumenc H, Rangon L (2005) Supercritical drying applied to natural “gels”: allophanic soils. J Sol-Gel Sci Technol 36:61–68

    Article  CAS  Google Scholar 

  • Woignier T, Primera J, Hashmy A (2006) Application of the DLCA model to “natural” gel: the allophanic soils. J Sol-Gel Sci Technol 40:201–207

    Article  CAS  Google Scholar 

  • Woignier T, Pochet G, Doumenc H, Dieudonné P, Duffours L (2007) Allophane: a natural gel in volcanic soils with interesting environmental properties. J Sol-Gel Sci Technnol 41:25–30

    Article  CAS  Google Scholar 

  • Yasuhisa Y, Karube J (1999) Application of a scaling law to the analysis of allophane aggregates. Colloid Surface A 151:43–47

    Article  Google Scholar 

  • Yenugün B, Güvenilir Y (2003) Partial purification and kinetic characterization of acid phosphatase from garlic seedling. Appl Biochem Biotech 107:677–687

    Article  Google Scholar 

  • Zambonelli C, Roberts MF (2003) An iron-dependent bacterial phospholipase D reminiscent of purple acid phosphatases. J Biol Chem 278:13706–13711

    Article  PubMed  CAS  Google Scholar 

  • Zunino H, Borie F, Aguilera S, Martin JP, Haider K (1982) Decomposition of 14C-labelled glucose, plant and microbial products and phenols in volcanic ash-derived soils of Chile. Soil Biol Biochem 14:37–43

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Analí Rosas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rosas, A., López, A., López, R. (2010). Behavior of Enzymatic Activity in Chilean Volcanic Soil and Their Interactions with Clay Fraction. In: Shukla, G., Varma, A. (eds) Soil Enzymology. Soil Biology, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14225-3_17

Download citation

Publish with us

Policies and ethics