Skip to main content

Fungal Oxidoreductases and Humification in Forest Soils

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 22))

Abstract

Humification is aerobic, largely oxidative process of non-living organic matter biotransformation into recalcitrant humic substances (HS). HS comprise up to 90% of soil organic matter and represent a long-time sink for atmospheric CO2 with mean residence time of 102–103 years. Wood- and soil-colonizing fungi are the major driving force in humification, being involved in transformation of plant residues, synthesis, and degradation of HS. The chapter is focused on production of ligninolytic oxidoreductases by different groups of fungi and their role in humus synthesis and transformation in forest soils. White-rot fungi and litter-decomposing basidiomycetes producing acidic laccases and ligninolytic peroxidases are mainly involved in delignification and HS degradation, leading to release of small soluble fragments (fulvic acids, monomers) and CO2. Brown-rot fungi producing non-enzymatic oxidative agents and probably laccase are responsible for synthesis of high molecular weight humic acids from partially oxidized lignin. Ascomycetes produce non-ligninolytic peroxidases, neutral laccases, and tyrosinases and are mainly involved in synthesis of HS by partial lignin oxidation or extracellular polymerization of low molecular weight polyphenols. Laccases of ectomycorrhizae and lichens may participate in humus formation via polymerization of phenols, while tyrosinases may contribute to humic acid fraction via melanization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexandrova LN (1980) Soil organic matter and processes of its transformation. Nauka, Leningrad (in Russian)

    Google Scholar 

  • Allison SD (2006) Soil minerals and humic acids alter enzyme stability: implications for ecosystem processes. Biogeochem 81:361–373

    Article  CAS  Google Scholar 

  • Almendros G, Dorado J (1999) Molecular characteristics related to the biodegradability of humic acid preparations. Eur J Soil Sci 50:227–236

    Article  CAS  Google Scholar 

  • Baldrian P (2006) Fungal laccases: occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  PubMed  CAS  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Beckett RP, Kranner I, Minibaeva F (2008) Stress physiology and the symbiosis. In: Nash TH (ed) Lichen Biology, 2nd edn, Cambridge Univ Press, Cambridge, pp 134–151

    Google Scholar 

  • Bending GD, Read DJ (1996a) Effects of the soluble polyphenol tannic acid on the activities of ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28:1595–1602

    Google Scholar 

  • Bending GD, Read DJ (1996b) Nitrogen mobilization from protein-polyphenol complex by ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28:1603–1612

    Article  CAS  Google Scholar 

  • Bending GD, Read DJ (1997) Lignin and soluble-phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi. Mycol Res 101:1348–1354

    Article  CAS  Google Scholar 

  • Burke RM, Cairney JWG (2002) Laccases and other polyphenol oxidases in ecto- and ericoid mycorrhizal fungi. Mycorrhiza 12:105–116

    Article  PubMed  CAS  Google Scholar 

  • Cairney JWG, Burke RM (1994) Fungal enzymes degrading plant cell walls: their possible significance in the ectomycorrhizal symbiosis. Mycol Res 98:1345–1356

    Article  CAS  Google Scholar 

  • Cairney JWG, Burke RM (1998) Do ecto- and ericoid mycorrhizal fungi produce peroxidase activity? Mycorrhiza 8:61–65

    Article  CAS  Google Scholar 

  • Cairney JWG, Taylor AFS, Burke RM (2003) No evidence for lignin peroxidase genes in ectomycorrhizal fungi. New Phytol 160:461–462

    Google Scholar 

  • Camarero S, Sarcar S, Ruiz-Duenas FJ, Martinez MJ, Martinez AT (1999) Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction site. J Biol Chem 274:10324–10330

    Article  PubMed  CAS  Google Scholar 

  • Chambers SM, Burke RM, Brooks PR, Cairney JWG (1999) Molecular and biochemical evidence for manganese-dependent peroxidase activity in Tylospora fibrillosa. Mycol Res 103:1098–1102

    Article  CAS  Google Scholar 

  • Chen DM, Bastias BA, Taylor AFS, Cairney JWG (2003) Identification of laccase-like genes in ectomycorrhizal basidiomycetes and transcriptional regulation by nitrogen in Piloderma byssinum. New Phytol 157:547–554

    Article  CAS  Google Scholar 

  • Chen J, Blume HP, Beyer L (2000) Weathering of rocks induced by lichen colonization – a review. Catena 39:121–146

    Article  CAS  Google Scholar 

  • Dahlman L, Person J, Palmqvist K, Nashholm T (2004) Organic and inorganic nitrogen uptake in lichens. Plants 219:459–467

    Google Scholar 

  • Dey S, Maiti TK, Bhattacharyya BC (1991) Lignin peroxidase production by a brown rot fungus Polyporus ostreiformis. J Ferment Bioeng 72:402–404

    Article  CAS  Google Scholar 

  • Duran N, Ferrer I, Rodriguez J (1987) Ligninases from Chrysonilia sitophila (TFB-27441). Appl Microbiol Biotechnol 16:157–167

    CAS  Google Scholar 

  • Eggert C, Temp U, Eriksson KEL (1996) Lignin degradation by a fungus lacking lignin and Mn peroxidase. In: Jeffries T, Vikarii L (eds) Enzymes in the pulp and paper manufacturing. ACS Symp Ser 655: 130–150

    Google Scholar 

  • Fakoussa RM, Frost PJ (1999) In vivo-decolorization of coal-derived humic acids by laccase-excreting fungus Trametes versicolor. Appl Microbiol Biotechnol 52:60–65

    Article  CAS  Google Scholar 

  • Fakoussa RM, Hofrichter M (1999) Biotechnology and microbiology of coal degradation. Appl Microbiol Biotechnol 52:25–40

    Article  PubMed  CAS  Google Scholar 

  • Flaig W (1966) The chemistry of humic substances. In: The use of isotopes in soil organic matter studies, Report of FAO/IAEA technical meeting. Pergamon, New York, pp 103–127

    Google Scholar 

  • Galliano H, Gas G, Seris JL, Boudet AM (1991) Lignin degradation by Rigidoporus lignosus involves synergistic action of two oxidizing enzymes: Mn-peroxidase and laccase. Enzym Microb Technol 13:478–482

    Article  CAS  Google Scholar 

  • Ghosh D, Mukherjee R (1998) Modeling tyrosinase monooxygenase activity. Spectroscopic and magnetic investigations of products due to reactions between copper(I) complexes of xylyl-based dinucleating ligands and dioxygen: aromatic ring hydroxylation and irreversible oxidation products. Inorg Chem 37:6597–6605

    Article  PubMed  CAS  Google Scholar 

  • Glazovskaya MA (1996) Role and functions of the pedosphere in geochemical carbon cycles. Pochvovedenije 2:174–186 (in Russian)

    Google Scholar 

  • Goodell B (2003) Brown-rot fungal degradation of wood: our evolving view. ACS Symp Ser 845:97–118

    Article  CAS  Google Scholar 

  • Gramss G, Ziegenhagen D, Sorge S (1999) Degradation of soil humic extract by wood- and soil-associated fungi, bacteria, and commercial enzymes. Microb Ecol 137:140–151

    Article  Google Scholar 

  • Grinhut T, Hadar Y, Chen Y (2007) Degradation and transformation of humic substances by saprotrophic fungi: processes and mechanisms. Fungal Biol Rev 21:179–189

    Article  Google Scholar 

  • Guillén F, Muñoz C, Gómez-Toribio V, Martínez AT, Jesús Martínez M (2000) Oxygen activation during oxidation of methoxyhydroquinones by laccase from Pleurotus eryngii. Appl Environ Microbiol 66:170–175

    Google Scholar 

  • Haider K, Trojanowski J (1975) Decomposition of specifically 14C-labelled phenols and dehydropolymers of coniferyl alcohol as models for lignin degradation by soft and white rot fungi. Arch Microbiol 105:33–41

    Article  CAS  Google Scholar 

  • Hammel KE, Kapich AN, Jensen KA, Ryan AC (2002) Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb Technol 30:445–453

    Article  CAS  Google Scholar 

  • Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11:349–355

    Article  PubMed  CAS  Google Scholar 

  • Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    Article  CAS  Google Scholar 

  • Heinfling A, Ruiz-Duenas FJ, Martinez MJ, Bergbauer M, Szewzyk U, Martinez AT (1998) A study on reducing substrates of manganese-oxidising peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett 428:141–416

    Article  PubMed  CAS  Google Scholar 

  • Heinzkill M, Bech L, Halkier T, Schneider P, Anke T (1998) Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae). Appl Environ Microbiol 64:1601–1606

    PubMed  CAS  Google Scholar 

  • Hobbie EA, Horton TR (2007) Evidence that saprotrophic fungi mobilize carbon and mycorrhizal fungi mobilize nitrogen during litter decomposition. New Phytol 173:447–449

    Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30:454–466

    Article  CAS  Google Scholar 

  • Holker U, Ludwig S, Scheel T, Hofer M (1999) Mechanisms of coal solubilization by the dueteromycetes Trichoderma atroviride and Fusarium oxysporum. Appl Microbiol Biotechnol 52:57–59

    Article  PubMed  CAS  Google Scholar 

  • Kang KS, Felbeck GT (1965) A comparison of the alkaline extract of tissues of Aspergillus niger with humic acids from three soils. Soil Sci 99:175–181

    Article  CAS  Google Scholar 

  • Kanunfre CC, Zancan GT (1998) Physiology of exolaccase production by Thelephora terrestris. FEMS Microbiol Lett 161:151–156

    Article  CAS  Google Scholar 

  • Kelleher BP, Simpson AJ (2006) Humic substances in soils: are they really chemically distinct? Environ Sci Technol 40:4605–4611

    Article  PubMed  CAS  Google Scholar 

  • Kirk TK (1975) Effects of a brown-rot fungus Lenzites trabea on lignin in spruce wood. Holzforschung 29:99–107

    Article  CAS  Google Scholar 

  • Kluczek-Turpeinen B, Steffen KT, Tuomela M, Hatakka A, Hofrichter M (2005) Modification of humic acids by the compost-dwelling deuteromycete Paecilomyces inflatus. Appl Microbiol Biotechnol 66:443–449

    Article  PubMed  CAS  Google Scholar 

  • Kluczek-Turpeinen B, Tuomela M, Hatakka A, Hofrichter M (2003) Lignin degradation in a compost environment by the deuteromycete Paecilomyces inflatus. Appl Microbiol Biotechnol 61:374–379

    PubMed  CAS  Google Scholar 

  • Kluczek-Turpeinen B, Maijala P, Hofrichter M, Hatakka A (2007) Degradation and enzymatic activities of three Paecilomyces inflatus strains grown on diverse lignocellulosic substrates. Intern Biodeterior Biodegrad 59:283–291

    Article  CAS  Google Scholar 

  • Kononova MM (1966) Soil organic matter. Pergamon, Oxford

    Google Scholar 

  • Koroleva-Skorobogat’ko O, Stepanova E, Gavrilova V et al (1998) Purification and characterization of the constitutive form of laccases from the basidiomycete Coriolus hirsutus and effect of inducers on laccase synthesis. J Biotechnol Appl Biochem 28:47–54

    Google Scholar 

  • Koukol O, Gryndler M, Novak F, Vosatka M (2004) Effect of Chalara longipes on decomposition of humic acids from Picea abies needle litter. Folia Microbiol 49:574–578

    Article  CAS  Google Scholar 

  • Kranner I, Beckett R, Hochman A, Nash TH (2008) Dessication-tolerance in lichens: a review. The Bryol 111:576–593

    Article  Google Scholar 

  • Laborda F, Monistrol IF, Luna N, Fernandez M (1999) Processes of liquefaction/solubilization of Spanish coals by microorganisms. Appl Microbiol Biotechnol 52:49–56

    Article  PubMed  CAS  Google Scholar 

  • Laufer Z, Beckett RP, Minibayeva FV, Luthje S, Bottger M (2006a) Occurrence of laccases in lichenized Ascomycetes in the suborder Peltigerineae. Myc Res 110:846–853

    Article  CAS  Google Scholar 

  • Laufer Z, Beckett RP, Minibayeva FV (2006b) Co-occurrence of the multicopper oxidases tyrosinase and laccase in lichens in sub-order Peltigerineae. Ann Bot 98:1035–1042

    Article  PubMed  CAS  Google Scholar 

  • Laufer Z, Beckett RP, Minibaeva FV, Luthje S, Bottger M (2009) Diversity of laccases from lichens in suborder Peltigerineae. The Bryol 112:418–426

    Article  Google Scholar 

  • Lee KH, Wi SG, Singh AP, Kim YS (2004) Micromorphological characteristics of decayed wood and laccase produced by the brown-rot fungus Coniophora puteana. J Wood Sci 50:281–284

    Article  Google Scholar 

  • Leonowicz A, Matuszewska A, Luterek J et al (1999) Biodegradation of lignin by white-rot fungi. Fungal Genet Biol 27:175–185

    Article  PubMed  CAS  Google Scholar 

  • Leontievsky AA, Vares T, Lankinen P, Shergill JK, Pozdnyakova NN, Myasoedova NM, Kalkkinen N, Golovleva LA, Cammack R, Thurston CF, Hatakka A (1997a) Blue and yellow laccases of ligninolytic fungi. FEMS Microbiol Lett 156:9–14

    Article  PubMed  CAS  Google Scholar 

  • Leontievsky AA, Myasoedova N, Pozdnyakova N, Golovleva L (1997b) “Yellow” laccase of Panus tigrinus oxidizes non-phenolic substrates without electron-transfer mediators. FEBS Lett 413:446–448

    Article  PubMed  CAS  Google Scholar 

  • Leontievsky AA, Myasoedova NM, Baskunov BP, Pozdnyakova NN, Vares T, Kalkkinen N et al (1999) Reactions of blue and yellow fungal laccases with lignin model compounds. Biochemistry (Moscow) 64:1150–1156

    CAS  Google Scholar 

  • Liers C, Ulrich R, Steffen KT, Hatakka A, Hofrichter M (2006) Mineralization of 14C-labelled synthetic lignin and extracellular enzyme activities of the wood-colonizing ascomycetes Xylaria hypoxylon and Xylaria polymorpha. Appl Microbiol Biotechnol 69:573–579

    Article  PubMed  CAS  Google Scholar 

  • Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Hogberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620

    Google Scholar 

  • Lisov AV, Leontievsky AA, Golovleva LA (2003) Hybrid Mn-peroxidase from the ligninolytic fungus Panus tigrinus 8/18. Isolation, substrate specificity, and catalytic cycle. Biochemistry (Moscow) 68:1027–1035

    Article  CAS  Google Scholar 

  • Lisov AV, Zavarzina AG, Zavarzin AA, Leontievsky AA (2007) Laccases produced by lichens of the order Peltigerales. FEMS Microbiol Lett 275:46–52

    Article  PubMed  CAS  Google Scholar 

  • Luis P, Kellner H, Zimdars B, Langer U, Martin F, Buscot F (2005) Patchiness and spatial distribution of laccase genes of ectomycorrhizal, saprotrophic, and unknown basidiomycetes in the upper horizons of a mixed forest cambisol. Microb Ecol 50:570–579

    Article  PubMed  CAS  Google Scholar 

  • Makino N, McMahill PHS, Masonthe HS (1974) The oxidation state of copper in resting tyrosinase. J Biol Chem 249:6062–6066

    PubMed  CAS  Google Scholar 

  • Martin JP, Haider K (1971) Microbial activity in relation to soil humus formation. Soil Sci 111:54–63

    Article  CAS  Google Scholar 

  • Martin JP, Haider K (1969) Phenolic polymers of Stachybotris atra, Stachybotris chartarum and Epicoccum nigrum in relation to humic acid formation. Soil Sci 107:260–270

    Article  CAS  Google Scholar 

  • Maltseva OV, Niku-Paavola ML, Leontievsky AA, Myasoedova NM, Golovleva LA (1991) Ligninolytic enzymes of the white rot fungus Panus tigrinus. Biotechnol Appl Biochem 13:291–302

    CAS  Google Scholar 

  • Mester T, Field JA (1998) Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjercandera species strain BOS55 in the absence of manganese. J Biol Chem 273: 15412–15417

    Google Scholar 

  • Mikutta R, Kleber M, Torn MS, Jahn R (2006) Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry 77:25–56

    Article  CAS  Google Scholar 

  • Mirchink TG (1976) Soil mycology. Moscow State University Press, Moscow

    Google Scholar 

  • Morgenstern I, Klopman S, Hibbett D (2008) Molecular evolution and diversity of lignin degrading heme peroxidases in the Agaricomycetes. J Mol Evol 66:243–257

    Google Scholar 

  • Nakayama T, Amachi T (1999) Fungal peroxidase: its structure, function, and application. J Mol Catal B – Enzyme 6:185–198

    Article  CAS  Google Scholar 

  • Ng TB, Wang HX (2004) A homodimeric laccase with unique characteristics from the yellow mushroom Cantharellus cibarius. Biochem Biophys Res Commun 313:37–41

    Article  PubMed  CAS  Google Scholar 

  • Orlov DS (1990) Humus acids and the general theory of humification. MSU Press, Moscow (in Russian)

    Google Scholar 

  • Osono T (2007) Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol Res 22:955–974

    Article  Google Scholar 

  • Perez-Boada M, Ruiz-Duenas FJ, Pogni R, Basosi R, Choinowski T, Martinez MJ, Piontek K, Martinez AT (2005) Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J Mol Biol 354:385–402

    Article  PubMed  CAS  Google Scholar 

  • Rabinovich ML, Bolobova AV, Kondrashchenko VI (2001) Theoretical basis of the biotechnology of wood composites. Wood and wood-decaying fungi, vol 1. Nauka, Moscow (in Russian)

    Google Scholar 

  • Rabinovich ML, Bolobova AV, Vasilchenko LG (2004) Fungal decomposition of natural aromatic structures and xenobiotics: a review. Appl Biochem Microbiol 40:1–17

    Article  CAS  Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytol 157:475–492

    Google Scholar 

  • Řezáčová V, Hršelová H, Gryndlerová H, Mikšík I, Gryndler M (2006) Modifications of degradation-resistant soil organic matter by soil saprobic microfungi. Soil Biol Biochem 38:2292–2299

    Article  CAS  Google Scholar 

  • Rodriguez J, Ferraz A, Nogueira RF, Ferrer I, Esposito E, Duran N (1997) Lignin biodegradation by the ascomycete Chrisonilia sitophila. Appl Biochem Biotechnol 62:233–242

    Article  PubMed  CAS  Google Scholar 

  • Rosenbrock P, Buscot F, Munch JC (1995) Fungal succession and changes in the fungal degradation potential during the initial stage of litter decomposition in a black alder forest (Alnus glutinosa (L.) Gaertn.). Eur J Soil Biol 31:1–11

    Google Scholar 

  • Rypaсek V, Rypackova M (1975) Brown rot of wood as a model for studies of lignocellulose humification. Biol Plantarum (Praha) 17:452–457

    Article  Google Scholar 

  • Sanchez-Ferrer A, Rodriguez-Lopez JN, Garcia-Canovas F, Garcia-Carmona F (1995) Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta 1247:1–11

    Article  PubMed  Google Scholar 

  • Saparrat MCN, Martinez MJ, Tournier HA, Cabello MN, Arambarri AM (2000) Production of ligninolytic enzymes by Fusarium solani strains isolated from different substrata. World J Microbiol Biotechnol 16:799–803

    Article  CAS  Google Scholar 

  • Schlosser D, Hofer C (2002) Laccase catalyzed oxidation of Mn2+ in the presence of natural Mn3+ chelators as a novel source of extracellular H2O2 production and its impact on manganese peroxidase. Appl Environ Microbiol 68:3514–3521

    Article  PubMed  CAS  Google Scholar 

  • Schwarze FWMR (2007) Wood decay under the microscope. Fungal Biol Rev 21:133–170

    Article  Google Scholar 

  • Selinheimo E, Nieidhin D, Steffensen C, Nielsen J, Lomascolo A, Halaouli S, Record E, O’Beirne D, Buchert J, Kruus K (2007) Comparison of the characteristics of fungal and plant tyrosinases. J Biotechnol 130:471–480

    Article  PubMed  CAS  Google Scholar 

  • Shin KS, Oh IK, Kim CJ (1997) Production and purification of Remazol brilliant blue R decolorizing peroxidase from the culture filtrate of Pleurotus ostreatus. Appl Environ Microbiol 63:1744–1748

    Google Scholar 

  • Silva-Stenico ME, Vengadajellum CJ, Janjua HA, Harrison STL, Burton SG, Cowan DA (2007) Degradation of low rank coal by Trichoderma atroviride ES11. J Ind Microbiol Biotechnol 34:625–631

    Article  PubMed  CAS  Google Scholar 

  • Sklarz G, Antibus RK, Sinsabaugh RL, Linkins AE (1989) Production of phenol oxidases and peroxidases by wood-rotting fungi. Mycologia 81:234–240

    Google Scholar 

  • Snajdr J, Valaskova V, Merhautova V, Herinkova J, Cajthaml T, Baldrian P (2008) Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biol Biochem 40:2068–2075

    Article  CAS  Google Scholar 

  • Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:563–2605

    Article  Google Scholar 

  • Steffen KT, Cajthaml T, Snajdr A, Baldrian P (2007) Differential degradation of oak (Quercus petraea) leaf litter by litter-decomposing basidiomycetes. Res Microbiol 158:447–455

    Article  PubMed  CAS  Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2002) Degradation of humic acids by the litter-decomposing basidiomycete Collybia dryophila. Appl Environ Microbiol 68:3442–3448

    Article  PubMed  CAS  Google Scholar 

  • Steffen KT, Hofrichter M, Hatakka A (2000) Mineralization of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 54:819–825

    Article  PubMed  CAS  Google Scholar 

  • Stepanova EV, Koroleva OV, Vasilchenko LG, Karapetyan KN, Landesman EO, Yavmetdinov IS, Kozlov YP, Rabinovich ML (2003) Fungal decomposition of oat straw during liquid and solid-state fermentation. Appl Biochem Microbiol (Moscow) 39:65–74

    Article  CAS  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions, 2nd edn. Wiley, New York

    Google Scholar 

  • Stolbovoi V (2006) Soil carbon in the forests of Russia. Mitig Adap Strat Gl Change 11:203–222

    Article  Google Scholar 

  • Talbot JM, Allison SD, Treseder KK (2008) Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct Ecol 22:955–963

    Google Scholar 

  • Temp U, Meyrahn H, Eggert C (1999) Extracellular phenol oxidase patterns during depolymerization of low-rank coal by three basidiomycetes. Biotechnol Lett 21:281–287

    Article  CAS  Google Scholar 

  • Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 221:661–663

    Article  PubMed  CAS  Google Scholar 

  • Thurston C (1994) The structure and function of fungal laccases. Microbiol 140:19–26

    Article  CAS  Google Scholar 

  • Valaskova V, Snajdr J, Bittner B, Cajthaml T, Merhautova V, Hofrichter M, Baldrian P (2007) Production of lignocellulose-degrading enzymes and degradation of leaf litter by saprotrophic basidiomycetes isolated from a Quercus petraea forest. Soil Biol Biochem 39:651–660

    Google Scholar 

  • Valmaseda M, Martinez AT, Almendros D (1989) Contribution by pigmented fungi to P-type humic acid formation in two forest soils. Soil Biol Biochem 21:23–28

    Article  CAS  Google Scholar 

  • Vares T, Lundell TK, Hatakka AI (1992) Novel heme-containing enzyme possibly involved in lignin degradation by the white-rot fungus Junghuhnia separabilima. FEMS Microbiol Lett 99:53–58

    Article  CAS  Google Scholar 

  • Waksman SA (1931) Humus. Williams and Wilkins, Baltimore

    Google Scholar 

  • Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 2:388–393

    Article  CAS  Google Scholar 

  • Wong DWS (2008) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol. doi:

    Google Scholar 

  • Yanagi Y, Tamaki H, Otsuka H, Fujitake N (2002) Comparison of decolorization by microorganisms of humic acids with different 13C NMR properties. Soil Biol Biochem 34:729–731

    Article  CAS  Google Scholar 

  • Yang JS, Yuan HL, Wang HX, Chen WX (2005) Purification and characterization of lignin peroxidases from Penicillium decumbens P6. World J Microbiol Biotechnol 21:435–440

    Article  CAS  Google Scholar 

  • Yaropolov AI, Skorobogat’ko OV, Vartanov SS, Varfolomeyev SD (1994) Laccase. Properties, catalytic mechanism, and applicability. Appl Biochem Biotechnol 49:257–280

    Article  CAS  Google Scholar 

  • Yavmetdinov IS, Stepanova EV, Gavrilova VP, Lokshin BV, Perminova IV, Koroleva OV (2003) Isolation and characterization of humin-like substances produced by wood-degrading white-rot fungi. Appl Biochem Microbiol (Moscow) 39:257–264

    Article  CAS  Google Scholar 

  • Zaprometova KM, Mirchink TG, Orlov DS, Yukhnin AA (1971) Characteristics of black pigments of the dark-colored soil fungi. Soviet Soil Sci 7:22–30

    Google Scholar 

  • Zavarzina AG, Leontievsky AA, Golovleva LA, Trofimov SY (2004) Biotransformation of soil humic acids by blue laccase of Panus tigrinus 8/18: an in vitro study. Soil Biol Biochem 36:359–369

    Article  CAS  Google Scholar 

  • Zavarzina AG, Zavarzin AA (2006) Laccase and tyrosinase activities in lichens. Microbiol (Moscow) 75:546–556

    Article  CAS  Google Scholar 

  • Zavgorodnyaya YA, Demin VV, Kurakov AV (2002) Biochemical degradation of soil humic acids and fungal melanins. Org Geochem 33:347–355

    Article  CAS  Google Scholar 

  • Zviagintsev DG, Mirchink TG (1986) On the nature of soil humic acids. Soviet Soil Sci 5:68–75

    Google Scholar 

Download references

Acknowledgments

Financial support from the Russian Foundation for Fundamental Research (grant 09-04-00570) and from the Programme No.15 of the Presidium of Russian Academy of Sciences “Origin of the Biosphere and Evolution of Geobiological systems” is gratefully acknowledged. We are expressing our sincere thanks to Prof. Richard P. Beckett for long lasting cooperation, his valuable comments and revising the language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Zavarzina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zavarzina, A.G., Lisov, A.A., Zavarzin, A.A., Leontievsky, A.A. (2010). Fungal Oxidoreductases and Humification in Forest Soils. In: Shukla, G., Varma, A. (eds) Soil Enzymology. Soil Biology, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14225-3_11

Download citation

Publish with us

Policies and ethics