Skip to main content

A Classification of Interface Treatments for FSI

  • Conference paper
  • First Online:
Fluid Structure Interaction II

Abstract

This paper proposes a taxonomy of methods for the treatment of the fluid-structure interface in FSI coupled problems. The top-level classification is based on the presence or absence of Additional Interface Variables (AIV) as well as their type. Associated prototype methods: Direct Force Motion Transfer (DFMT), Mortar and Localized Lagrange Multipliers (LLM) are defined. These are later studied in more detail using a specific FSI benchmark problem used in Ross’ 2006 thesis. Desirable attributes of the interfacing methods are stated and commented upon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous. COSMOS Virtual Data Center for Strong Motion, Consortium of Organizations for Strong Motion Observation Systems (COSMOS), Pacific Earthquake Engineering Research Center. Available from http://db.cosmos-eq.org, University of California, Berkeley.

  2. S. N. Atluri. On “hybrid” finite-element models in solid mechanics, in: Advances in Computer Methods for Partial Differential Equations. Ed. by R. Vichnevetsky, AICA, Rutgers University, 346–356, 1975.

    Google Scholar 

  3. F. Baaijens. A fictitious domain/mortar element method for fluid-structure interaction. Int. J. Numer. Meths. Fluids. 35, 743–761, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  4. F. Belgacem. The mortar finite element method with Lagrange multipliers. Numer. Math.. 84, 173–197, 1999.

    Google Scholar 

  5. C. Bernardi, Y. Maday, and A. T. Patera. A new nonconforming approach to domain decomposition: the mortar element method. Technical report, Université Pierre at Marie Curie, Paris, France, 1990.

    Google Scholar 

  6. D. Braess, W. Dahmen and C. Wieners. A multigrid algorithm for the mortar finite element method. SIAM Journal on Numerical Analysis. 37, 48–69, 2000.

    Article  MathSciNet  Google Scholar 

  7. F. Casadei, E. Gabellini, G. Fotia, F. Maggio and A. Quarteroni. A mortar spectral/finite element method for complex 2D and 3D elastodynamic problems. Comp. Meth. Appl. Mech. Engrg. 191, 5119–5148, 2002.

    Article  MathSciNet  Google Scholar 

  8. C. Farhat and F.-X. Roux. Implicit parallel processing in structural mechanics, Comput. Mech. Advances, 2, 1–124, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  9. C. Farhat, M. Lesoinne and N. Maman. Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field formulation, geometric conservation and distributed solution. Int. J. Numer. Meth. Engrg., 21, 807–835, 1995.

    MATH  MathSciNet  Google Scholar 

  10. C. Farhat, S. Piperno and B. Larrouturu. Partitioned procedures for the transient solution of coupled aeroelastic problems; Part I: model problem, theory and two-dimensional application. Comp. Meths. Appl. Mech. Engrg., 124, 79–112, 1995.

    Article  MATH  Google Scholar 

  11. C. Farhat, M. Lesoinne and P. LeTallec. Load and motion transfer algorithms for fluid/structure interaction problems with nonmatching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity. Comp. Meths. Appl. Mech. Engrg., 157, 95–114, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  12. V. Faucher and A. Combescure. A time and space mortar method for coupling linear modal subdomains and non-linear subdomains in explicit structural dynamics. Comp. Meths. Appl. Mech. Engrg., textbf192, 509–533, 2003.

    Google Scholar 

  13. C. A. Felippa and K. C. Park. Staggered transient analysis procedures for coupled dynamic systems: formulation, Comp. Meths. Appl. Mech. Engrg., 24, 61–112, 1980.

    Article  MATH  Google Scholar 

  14. C. A. Felippa and J. A. DeRuntz. Finite element analysis of shock-induced hull cavitation, Comp. Meths. Appl. Mech. Engrg., 44, 297–337, 1984.

    Article  MATH  Google Scholar 

  15. C. A. Felippa and T. L. Geers. Partitioned analysis of coupled mechanical systems, Engrg. Comput., 5, 123–133, 1988.

    Article  Google Scholar 

  16. C. A. Felippa, K. C. Park and C. Farhat. Partitioned analysis of coupled mechanical systems, Comp. Meths. Appl. Mech. Engrg., 190, 3247–3270, 2001.

    Article  MATH  Google Scholar 

  17. C. A. Felippa and K. C. Park. Model-based partitioned analysis of coupled problems, chapter 4 in Computational Aspects of Structural Dynamics and Vibrations, ed. by G Sandberg and R. Ohayon, CISM Courses and Lectures, vol. 505, Springer-Verlag, Berlin, 2008, 171–216.

    Google Scholar 

  18. T. L. Geers. Residual potential and approximate methods for three-dimensional fluid-structure interaction, J. Acoust. Soc. Am., 49, 1505–1510, 1971.

    Article  Google Scholar 

  19. T. L. Geers. Doubly asymptotic approximations for transient motions of general structures, J. Acoust. Soc. Am., 64, 1500–1508, 1978.

    Article  MATH  Google Scholar 

  20. T. L. Geers. Boundary element methods for transient response analysis, in: Chapter 4 of Computational Methods for Transient Analysis, ed. by T. Belytschko and T. J. R. Hughes, North-Holland, Amsterdam, 221–244, 1983.

    Google Scholar 

  21. B. Herry, L. Di Valentin and A. Combescure. An approach to the connection between subdomains with nonmatching meshes for transient mechanical analysis. Int. J. Numer. Meth. Engrg., 55, 973–1003, 2002.

    Article  MATH  Google Scholar 

  22. L. A. Jakobsen. A finite element approach to analysis and sensitivity analysis of time dependent fluid-structure interaction systems. Ph.D. Dissertation, Aalborg University, Denmark, 2002.

    Google Scholar 

  23. M. C. Junger and D. Feit, Sound, Structures and Their Interaction, MIT Press, Cambridge, Massachussets, 1972.

    MATH  Google Scholar 

  24. K. C. Park, C. A. Felippa and J. A. DeRuntz. Stabilization of staggered solution procedures for fluid-structure interaction analysis, in: Computational Methods for Fluid-Structure Interaction Problems, ed. by T. Belytschko and T. L. Geers, AMD Vol. 26, American Society of Mechanical Engineers, New York, 95–124, 1977.

    Google Scholar 

  25. K. C. Park. Partitioned transient analysis procedures for coupled-field problems: stability analysis, J. Appl. Mech., 47, 370–376, 1980.

    Article  MATH  Google Scholar 

  26. K. C. Park and C. A. Felippa. Partitioned analysis of coupled systems, Chapter 3 in Computational Methods for Transient Analysis, T. Belytschko and T. J. R. Hughes, eds., North-Holland, Amsterdam–New York, 157–219, 1983.

    Google Scholar 

  27. K. C. Park and C. A. Felippa. A variational principle for the formulation of partitioned structural systems, Int. J. Numer. Meth. Engrg., 47, 395–418, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  28. K. C. Park, C. A. Felippa and R. Ohayon. Partitioned formulation of internal fluid-structure interaction problems via localized Lagrange multipliers, Comp. Meths. Appl. Mech. Engrg., 190, 2989–3007, 2001.

    Article  MATH  Google Scholar 

  29. K. C. Park, C. A. Felippa and G. Rebel, A simple algorithm for localized construction of non-matching structural interfaces, Int. J. Numer. Meth. Engrg., 53, 1261–1285, 2002.

    MathSciNet  Google Scholar 

  30. K. C. Park, C. A. Felippa and G. Rebel. Interfacing nonmatching finite element discretizations: the Zero Moment Rule. In Trends in Computational Mechanics, ed. by W. A. Wall et. al., CIMNE, Barcelona, Spain, 355–367, 2001.

    Google Scholar 

  31. T. H. H. Pian and P. Tong. Basis of finite element methods for solid continua, Int. J. Numer. Meth. Engrg., 1, 3–29, 1969

    Article  MATH  Google Scholar 

  32. S. Piperno and C. Farhat. Partitioned procedures for the transient solution of coupled aeroelastic problems - Part II: energy transfer analysis and three-dimensional applications. Comp. Meth. Appl. Mech. Engrg., 190, 3147–3170, 2001.

    Article  MATH  Google Scholar 

  33. W. Prager. Variational principles for linear elastostatics for discontinous displacements, strains and stresses, in Recent Progress in Applied Mechanics, The Folke-Odgvist Volume, ed. by B. Broger, J. Hult and F. Niordson, Almqusit and Wiksell, Stockholm, 463–474, 1967.

    Google Scholar 

  34. C. R. Rao and S. K. Mitra. Generalized Inverse of Matrices and its Applications. Wiley, New York, 1971.

    MATH  Google Scholar 

  35. G. Rebel, K. C. Park, C. A. Felippa. A contact formulation based on localized Lagrange multipliers: formulation and applications to two-dimensional problems, Int. J. Numer. Meth. Engrg., 54, 263–297, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  36. M. R. Ross. Coupling and simulation of acoustic fluid-structure interaction systems using localized Lagrange multipliers. PhD thesis, University of Colorado at Boulder, 2006. Available from http://caswww.colorado.edu/courses/FSI.d

  37. M. R. Ross, C. A. Felippa, K. C. Park and M. A. Sprague. Treatment of acoustic fluid-structure interaction by localized Lagrange multipliers: Formulation, Comp. Meths. Appl. Mech. Engrg., 197, 2008, 3057–3079.

    Article  MATH  MathSciNet  Google Scholar 

  38. M. R. Ross, M. A. Sprague, C. A. Felippa and K. C. Park. Treatment of acoustic fluid-structure interaction by localized Lagrange multipliers and comparison to alternative interface coupling methods, Comp. Meths. Appl. Mech. Engrg., 198, 2009, 986–1005.

    Article  Google Scholar 

  39. M. A. Sprague and T. L. Geers. A spectral-element method for modeling cavitation in transient fluid-structure interaction. Int. J. Numer. Meth. Engrg.. 60, 2467–2499, 2004.

    Google Scholar 

  40. B. Wohlmuth. Hierarchical a posteriori error estimators for finite element methods. SIAM Journal of Numerical Analysis. 36, 1636–1658, 1999.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Felippa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this paper

Cite this paper

Felippa, C.A., Park, K.C., Ross, M.R. (2011). A Classification of Interface Treatments for FSI. In: Bungartz, HJ., Mehl, M., Schäfer, M. (eds) Fluid Structure Interaction II. Lecture Notes in Computational Science and Engineering, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14206-2_2

Download citation

Publish with us

Policies and ethics