Skip to main content

Tracking

  • Chapter
  • First Online:
Augmented Reality

Part of the book series: Informatik im Fokus ((INFOFOKUS,volume 0))

  • 12k Accesses

Zusammenfassung

Neben der Darstellung von virtuellen Objekten ist die Lagebestimmung der zweite zentrale Bestandteil von AR-Systemen. Die Lage des Betrachters, und oft auch die Lage wichtiger Gegenstände in der Umgebung oder der Ort, an dem virtuelle Objekte erscheinen sollen, müssen dem AR-System zur Verfügung stehen. Der Prozess der Lagebestimmung wird gemeinhin als Tracking bezeichnet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. R. Bauernschmitt, M. Feuerstein, J. Traub, E.U. Schirmbeck, G. Klinker, and R. Lange. Optimal port placement and enhanced guidance in robotically assisted cardiac surgery. Surgical Endoscopy, 21(4):684–687, April 2007.

    Article  Google Scholar 

  2. R.T. Azuma. A Survey of Augmented Reality. Presence-Teleoperators and Virtual Environments, 6(4):355–385, 1997.

    Google Scholar 

  3. K. Daniilidis. Hand-Eye Calibration Using Dual Quaternions. The International Journal of Robotics Research, 18(3):286, 1999.

    Article  MathSciNet  Google Scholar 

  4. Ulrich Bergmeier. Augmented Reality in Vehicles – Technical Realisation of a Contact Analogue Head-Up Display under Automotive Capable Aspects; Usefulness Exemplified through Night Vision Systems. In Proceedings of 32nd World Automotive Congress (FISITA), 2008.

    Google Scholar 

  5. Ulrich Bergmeier. Methode zur kontaktanalogen Visualisierung von Fahrerassistenzsystemen unter automotive-tauglichen Gesichtspunkten. In Proceedings of the 54. Kongress der Gesellschaft für Arbeitswissenschaften, pages 125–128, 2008.

    Google Scholar 

  6. C. Cruz-Neira, D.J. Sandin, and T.A. DeFanti. Surround-Screen Projection-based Virtual Reality: the Design and Implementation of the CAVE. Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pages 135–142, 1993.

    Google Scholar 

  7. T. Miyashita, P. Meier, T. Tachikawa, S. Orlic, T. Eble, V. Scholz, A. Gapel, O. Gerl, S. Arnaudov, and S. Lieberknecht. An Augmented Reality Museum Guide. In Proceedings of the 7th IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR), pages 103–106. IEEE Computer Society, 2008.

    Google Scholar 

  8. Martin Bauer. Tracking Errors in Augmented Reality. PhD thesis, Technische Universität München, 2007.

    Google Scholar 

  9. R.Y. Tsai. An efficient and accurate camera calibration technique for 3D machine vision. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, volume 1, pages 364–374. Miami: IEEE, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Tönnis .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tönnis, M. (2010). Tracking. In: Augmented Reality. Informatik im Fokus, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14179-9_3

Download citation

Publish with us

Policies and ethics