Skip to main content

RDDES for Strong Shock-Wave/Boundary Layer Interaction

  • Conference paper
Progress in Hybrid RANS-LES Modelling

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 111))

Abstract

Detached eddy simulation (DES) is a suitable method for the simulation of complex turbulent flows, providing an access to the resolved turbulent scales at relatively low computational cost. The near wall region is solved by (U) RANS whereas the large scale detached region by large eddy simulation (LES). The RANS equations can give significant error when applied to flow involving shock-waves and their interaction with adverse pressure gradient boundary layers. Turbulence models based on eddy viscosity assumption yield very high amplification of the turbulent kinetic energy (TKE) under such non-equilibrium conditions and violate the realizability constraint. The main problem arises in shock-induced separated flows in rocket nozzles which are very sensitive to separation point prediction, and may completely change the flow physics with standard eddy viscosity models. In the present study a new version of DES has been proposed which deals fairly well with such type of flow configurations. Furthermore, emphasis is put on the problems includes (i) modelled stress depletion (MSD) and grid induced separation (ii) realizability issue and (iii) model sensitivity in supersonic separated flow regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balsara, D.S., Shu, C.W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasing high order of accuracy. Journal of Computational Physics 160, 405–452 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Cyril, P., Abderrahmane, N.: Flow separation in truncated ideal contour nozzle. Journal of Turbulence 5(1) (2004)

    Google Scholar 

  • Lumely, J.L.: Computational modelling of turbulent flows. In: Advance in Applied Mechanics, vol. 18. Academic Press, London (1978)

    Google Scholar 

  • Menter, F.R., Kuntz, M.: Adaptation of eddy-viscosity turbulence models to unsteady separated flows behind vehicles. In: The aerodynamics of heavy vehicles: Trucks, busses and trains. Springer, Asilomer (2002)

    Google Scholar 

  • Menter, F.R., Kuntz, M., Langtry, R.: Ten years of industrial experience with the sst turbulence model. Turbulence, Heat and Mass Transfer (2003)

    Google Scholar 

  • Moore, J.G., Moore, J.: Realizability in two equation models. AIAA Paper 99-3779 (1999)

    Google Scholar 

  • Nguyen, A.T.: Découlement instationaire et charges latérales dans les tuyéres propulsives. Ph.D Thesis, Université de Poitiers (2003)

    Google Scholar 

  • de Roquefort, T.A.: Low frequency fluctuations in separated turbulent compressible flows. In: Symposium on Advanced Fluid Information, Tokyo, Japan (2002)

    Google Scholar 

  • Schumann, U.: Realizability of reynolds stress turbulence models. Physics of Fluids 20, 721–725 (1977)

    Article  MATH  Google Scholar 

  • Shams, A., Comte, P.: Formation of cap-shock pattern. In: 3rd European Conference for Aero-Space Sciences (EUCASS), Versailles-Paris, France, July 6-9 (2009)

    Google Scholar 

  • Shams, A., Comte, P., Girard, S., Lehnasch, G., Shahab, M.F.: 3d unsteady numerical investigation of an overexpanded thrust optimized contour nozzle. In: Sixth European Symposium on Aerothermodynamics for Space Vehicles, Versaille, France (2008)

    Google Scholar 

  • Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. AIAA Paper 92-0439 (1992)

    Google Scholar 

  • Spalart, P.R., Jou, W.H., Strelets, M., Allmaras, S.R.: Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach. In: Advances in DNS/LES, 1st AFOSR Int. Conf. on DNS/LES, pp. 137–148 (1997)

    Google Scholar 

  • Spalart, P.R., Deck, S., Shur, M., Squires, K.D., Strelets, M., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical Computational Fluid Dynamics 20, 181–195 (2006)

    Article  MATH  Google Scholar 

  • Travin, A., Shur, M., Strelets, M., Spalart, P.R.: Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows. In: Friederich, R., Rodi, W. (eds.) Advances in LES of Complex Flows, Proceedings of EUROMECH Colloquium 412. Fluid Mech. Applic., vol. 65, pp. 239–254 (2002)

    Google Scholar 

  • Wilcox, D.C.: Reassessment of the scale deterring equation for advanced turbulence models. AIAA Journal 26, 1299–1310 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Yan, J., Mockett, C., Thiele, F.: Investigation of alternative length scale substitutions in detached-eddy simulation. Flow, Turbulence and Combustion 74, 85–102 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shams, A., Comte, P. (2010). RDDES for Strong Shock-Wave/Boundary Layer Interaction. In: Peng, SH., Doerffer, P., Haase, W. (eds) Progress in Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14168-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14168-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14167-6

  • Online ISBN: 978-3-642-14168-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics