Skip to main content

Finding Is as Easy as Detecting for Quantum Walks

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6198))

Included in the following conference series:

Abstract

We solve an open problem by constructing quantum walks that not only detect but also find marked vertices in a graph. The number of steps of the quantum walk is quadratically smaller than the classical hitting time of any reversible random walk P on the graph.

Our approach is new, simpler and more general than previous ones. We introduce a notion of interpolation between the walk P and the absorbing walk P′, whose marked states are absorbing. Then our quantum walk is simply the quantum analogue of the interpolation. Contrary to previous approaches, our results remain valid when the random walk P is not state-transitive, and in the presence of multiple marked vertices.

As a consequence we make a progress on an open problem related to the spatial search on the 2D-grid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambainis, A.: Quantum walk algorithm for Element Distinctness. In: Proc. 45th FOCS, pp. 22–31. IEEE Computer Society Press, New York (2004)

    Google Scholar 

  2. Magniez, F., Santha, M., Szegedy, M.: Quantum Algorithms for the Triangle Problem. In: Proc. 16th SODA (2005)

    Google Scholar 

  3. Buhrman, H., Špalek, R.: Quantum verification of matrix products. In: Proc. 17th ACM-SIAM Symposium on Discrete Algorithms, pp. 880–889 (2006)

    Google Scholar 

  4. Magniez, F., Nayak, A.: Quantum complexity of testing group commutativity. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1312–1324. Springer, Heidelberg (2005)

    Google Scholar 

  5. Aaronson, S., Ambainis, A.: Quantum search of spatial regions. Theory of Computing 1, 47–79 (2005)

    Article  MathSciNet  Google Scholar 

  6. Shenvi, N., Kempe, J., Whaley, K.: Quantum random-walk search algorithm. Phys. Rev. A 67, Article no. 052307 (2003)

    Google Scholar 

  7. Childs, A.M., Goldstone, J.: Spatial search and the Dirac equation. Phys. Rev. A 70(4), 042312 (2004)

    Google Scholar 

  8. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proc. 16th SODA, pp. 1099–1108 (2005)

    Google Scholar 

  9. Kempe, J.: Discrete quantum walks hit exponentially faster. Prob. Th. Rel. Fields 133(2), 215–235 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proc. 45th FOCS, pp. 32–41 (2004)

    Google Scholar 

  11. Krovi, H., Brun, T.A.: Hitting time for quantum walks on the hypercube. Phys. Rev. A 73(3), 032341 (2006)

    Article  MathSciNet  Google Scholar 

  12. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. In: Proc. 39th STOC, pp. 575–584. ACM Press, New York (2007)

    Google Scholar 

  13. Magniez, F., Nayak, A., Richter, P.C., Santha, M.: On the hitting times of quantum versus random walks. In: Proc. 19th SODA, SIAM, pp. 86–95. SIAM, Philadelphia (2009)

    Google Scholar 

  14. Tulsi, A.: Faster quantum-walk algorithm for the two-dimensional spatial search. Phys. Rev. A 78(1), 012310 (2008)

    Article  Google Scholar 

  15. Krovi, H., Ozols, M., Roland, J.: On the adiabatic condition and the quantum hitting time of Markov chains. Technical Report arXiv:1004.2721, arXiv.org (2010)

    Google Scholar 

  16. Kitaev, A.: Quantum measurements and the Abelian stabilizer problem. Technical Report quant-ph/9511026, arXiv.org (1995)

    Google Scholar 

  17. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. Royal Society A 454(1969), 339–354 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-error inputs. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 291–299. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Feige, U., Raghavan, P., Feleg, D., Upfal, E.: Computing with noisy information. SIAM Journal on Computing 23(5), 1001–1018 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krovi, H., Magniez, F., Ozols, M., Roland, J. (2010). Finding Is as Easy as Detecting for Quantum Walks. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14165-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14165-2_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14164-5

  • Online ISBN: 978-3-642-14165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics