Skip to main content

On the Relation between Polynomial Identity Testing and Finding Variable Disjoint Factors

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6198))

Included in the following conference series:

Abstract

We say that a polynomial f(x 1,...,x n ) is indecomposable if it cannot be written as a product of two polynomials that are defined over disjoint sets of variables. The polynomial decomposition problem is defined to be the task of finding the indecomposable factors of a given polynomial. Note that for multilinear polynomials, factorization is the same as decomposition, as any two different factors are variable disjoint.

In this paper we show that the problem of derandomizing polynomial identity testing is essentially equivalent to the problem of derandomizing algorithms for polynomial decomposition. More accurately, we show that for any reasonable circuit class there is a deterministic polynomial time (black-box) algorithm for polynomial identity testing of that class if and only if there is a deterministic polynomial time (black-box) algorithm for factoring a polynomial, computed in the class, to its indecomposable components.

An immediate corollary is that polynomial identity testing and polynomial factorization are equivalent (up to a polynomial overhead) for multilinear polynomials. In addition, we observe that derandomizing the polynomial decomposition problem is equivalent, in the sense of Kabanets and Impagliazzo [1], to proving arithmetic circuit lower bounds for NEXP.

Our approach uses ideas from [2], that showed that the polynomial identity testing problem for a circuit class \(\mathcal C\) is essentially equivalent to the problem of deciding whether a circuit from \(\mathcal C\) computes a polynomial that has a read-once arithmetic formula.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity 13(1-2), 1–46 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Shpilka, A., Volkovich, I.: Read-once polynomial identity testing. In: Proceedings of the 40th Annual STOC, pp. 507–516 (2008)

    Google Scholar 

  3. Gathen, J.v.z., Gerhard, J.: Modern computer algebra. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  4. Kaltofen, E.: Polynomial factorization: a success story. In: ISSAC, pp. 3–4 (2003)

    Google Scholar 

  5. Gathen, J.v.z.: Who was who in polynomial factorization. In: ISSAC, vol. 2 (2006)

    Google Scholar 

  6. Kayal, N.: Derandomizing some number-theoretic and algebraic algorithms. PhD thesis, Indian Institute of Technology, Kanpur, India (2007)

    Google Scholar 

  7. Agrawal, M., Kayal, N., Saxena, N.: Primes is in P. Annals of Mathematics 160(2), 781–793 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Mulmuley, K., Vazirani, U., Vazirani, V.: Matching is as easy as matrix inversion. Combinatorica 7(1), 105–113 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. JACM 27(4), 701–717 (1980)

    Article  MATH  Google Scholar 

  10. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Symbolic and algebraic computation, pp. 216–226 (1979)

    Google Scholar 

  11. DeMillo, R.A., Lipton, R.J.: A probabilistic remark on algebraic program testing. Inf. Process. Lett. 7(4), 193–195 (1978)

    Article  MATH  Google Scholar 

  12. Klivans, A., Spielman, D.: Randomness efficient identity testing of multivariate polynomials. In: Proceedings of the 33rd Annual STOC, pp. 216–223 (2001)

    Google Scholar 

  13. Agrawal, M., Biswas, S.: Primality and identity testing via chinese remaindering. JACM 50(4), 429–443 (2003)

    Article  MathSciNet  Google Scholar 

  14. Lipton, R.J., Vishnoi, N.K.: Deterministic identity testing for multivariate polynomials. In: Proceedings of the 14th annual SODA, pp. 756–760 (2003)

    Google Scholar 

  15. Agrawal, M.: Proving lower bounds via pseudo-random generators. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 92–105. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Raz, R., Shpilka, A.: Deterministic polynomial identity testing in non commutative models. Computational Complexity 14(1), 1–19 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dvir, Z., Shpilka, A.: Locally decodable codes with 2 queries and polynomial identity testing for depth 3 circuits. SIAM J. on Computing 36(5), 1404–1434 (2006)

    Article  MathSciNet  Google Scholar 

  18. Kayal, N., Saxena, N.: Polynomial identity testing for depth 3 circuits. Computational Complexity 16(2), 115–138 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Arvind, V., Mukhopadhyay, P.: The monomial ideal membership problem and polynomial identity testing. In: Proceedings of the 18th ISAAC, pp. 800–811 (2007)

    Google Scholar 

  20. Karnin, Z.S., Shpilka, A.: Deterministic black box polynomial identity testing of depth-3 arithmetic circuits with bounded top fan-in. In: Proceedings of the 23rd Annual CCC, pp. 280–291 (2008)

    Google Scholar 

  21. Saxena, N., Seshadhri, C.: An almost optimal rank bound for depth-3 identities. In: Proceedings of the 24th annual CCC (2009)

    Google Scholar 

  22. Dvir, Z., Shpilka, A., Yehudayoff, A.: Hardness-randomness tradeoffs for bounded depth arithmetic circuits. SIAM J. on Computing 39(4), 1279–1293 (2009)

    Article  MathSciNet  Google Scholar 

  23. Agrawal, M., Vinay, V.: Arithmetic circuits: A chasm at depth four. In: Proceedings of the 49th Annual FOCS, pp. 67–75 (2008)

    Google Scholar 

  24. Arvind, V., Mukhopadhyay, P.: Derandomizing the isolation lemma and lower bounds for circuit size. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 276–289. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. Kayal, N., Saraf, S.: Blackbox polynomial identity testing for depth 3 circuits. Electronic Colloquium on Computational Complexity (ECCC), (32) (2009)

    Google Scholar 

  26. Shpilka, A., Volkovich, I.: Improved polynomial identity testing for read-once formulas. In: APPROX-RANDOM, pp. 700–713 (2009)

    Google Scholar 

  27. Karnin, Z.S., Mukhopadhyay, P., Shpilka, A., Volkovich, I.: Deterministic identity testing of depth 4 multilinear circuits with bounded top fan-in. In: Proceedings of the 42th Annual STOC (2010)

    Google Scholar 

  28. Saxena, N., Seshadhri, C.: From sylvester-gallai configurations to rank bounds: Improved black-box identity test for depth-3 circuits. Electronic Colloquium on Computational Complexity (ECCC) (013) (2010)

    Google Scholar 

  29. Heintz, J., Schnorr, C.P.: Testing polynomials which are easy to compute (extended abstract). In: Proceedings of the 12th annual STOC, pp. 262–272 (1980)

    Google Scholar 

  30. Raz, R.: Multi-linear formulas for permanent and determinant are of super-polynomial size. In: Proceedings of the 36th Annual STOC, pp. 633–641 (2004)

    Google Scholar 

  31. Raz, R.: Multilinear NC 1 ≠ Multilinear NC 2. In: Proceedings of the 45th Annual FOCS, pp. 344–351 (2004)

    Google Scholar 

  32. Raz, R., Shpilka, A., Yehudayoff, A.: A lower bound for the size of syntactically multilinear arithmetic circuits. SIAM J. on Computing 38(4), 1624–1647 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Raz, R., Yehudayoff, A.: Lower bounds and separations for constant depth multilinear circuits. In: IEEE Conference on Computational Complexity, pp. 128–139 (2008)

    Google Scholar 

  34. Hancock, T.R., Hellerstein., L.: Learning read-once formulas over fields and extended bases. In: Proceedings of the 4th Annual COLT, pp. 326–336 (1991)

    Google Scholar 

  35. Bshouty, N.H., Hancock, T.R., Hellerstein, L.: Learning arithmetic read-once formulas. SIAM J. on Computing 24(4), 706–735 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kaltofen, E., Koiran, P.: On the complexity of factoring bivariate supersparse (lacunary) polynomials. In: ISSAC, pp. 208–215 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shpilka, A., Volkovich, I. (2010). On the Relation between Polynomial Identity Testing and Finding Variable Disjoint Factors. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14165-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14165-2_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14164-5

  • Online ISBN: 978-3-642-14165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics