Skip to main content

Mean-Payoff Games and Propositional Proofs

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6198))

Included in the following conference series:

Abstract

We associate a CNF-formula to every instance of the mean-payoff game problem in such a way that if the value of the game is non-negative the formula is satisfiable, and if the value of the game is negative the formula has a polynomial-size refutation in Σ2-Frege (a.k.a. DNF-resolution). This reduces the problem of solving mean-payoff games to the weak automatizability of Σ2-Frege, and to the interpolation problem for Σ2,2-Frege. Since the interpolation problem for Σ1-Frege (i.e. resolution) is solvable in polynomial time, our result is close to optimal up to the computational complexity of solving mean-payoff games. The proof of the main result requires building low-depth formulas that compute the bits of the sum of a constant number of integers in binary notation, and low-complexity proofs of their relevant arithmetic properties.

First author supported by CICYT TIN2007-68005-C04-03 (LOGFAC-2). Second author supported in part by MICINN Ramon y Cajal and CICYT TIN2007-66523 (FORMALISM). This work was done while visiting CRM, Bellaterra, Barcelona.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekhnovich, M., Razborov, A.A.: Resolution is not automatizable unless W[P] is tractable. In: 42nd IEEE Symp. Found. of Comp. Sci., pp. 210–219 (2001)

    Google Scholar 

  2. Atserias, A., Bonet, M.L.: On the automatizability of resolution and related propositional proof systems. Information and Computation 189(2), 182–201 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Atserias, A., Bonet, M.L., Esteban, J.L.: Lower bounds for the weak pigeonhole principle and random formulas beyond resolution. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 136–152. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Atserias, A., Maneva, E.: Mean payoff-games and the max-atom problem. Technical report (2009), http://www.lsi.upc.edu/~atserias

  5. Beame, P., Pitassi, T.: Simplified and improved resolution lower bounds. In: 37th IEEE Symp. Found of Comp. Sci., pp. 274–282 (1996)

    Google Scholar 

  6. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow–resolution made simple. J. ACM 48(2), 149–169 (2001); Prelim. version in STOC 1999

    Article  MATH  MathSciNet  Google Scholar 

  7. Bezem, M., Nieuwenhuis, R., Rodríguez-Carbonell, E.: The max-atom problem and its relevance. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 47–61. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Björklund, H., Vorobyov, S.: Combinatorial structure and randomized subexponential algorithms for infinite games. Theor. Comp. Sci. 349(3), 347–360 (2005)

    Article  MATH  Google Scholar 

  9. Bonet, M., Pitassi, T., Raz, R.: Lower bounds for cutting planes proofs with small coefficients. J. Symb. Logic 62(3), 708–728 (1997); Prelim. version in STOC 1995

    Article  MATH  MathSciNet  Google Scholar 

  10. Bonet, M.L., Domingo, C., Gavaldà, R., Maciel, A., Pitassi, T.: Non-automatizability of bounded-depth Frege proofs. Computational Complexity 13, 47–68 (2004); Prelim. version in CCC 1999

    Article  MATH  MathSciNet  Google Scholar 

  11. Bonet, M.L., Pitassi, T., Raz, R.: On interpolation and automatization for Frege systems. SIAM J. Comp. 29(6), 1939–1967 (2000); Prelim. version in FOCS 1997

    Article  MATH  MathSciNet  Google Scholar 

  12. Ehrenfeucht, A., Mycielsky, J.: Positional strategies for mean payoff games. International Journal of Game Theory 8(2), 109–113 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  13. Furst, M., Saxe, J., Sipser, M.: Parity, circuits and the polynomial time hierarchy. Mathematical Systems Theory 17, 13–27 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jurdziński, M.: Deciding the winner in parity games is in UP ∩ co-UP. Information Processing Letters 68, 119–124 (1998)

    Article  MathSciNet  Google Scholar 

  15. Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solving parity games. SIAM J. Comp. 38(4), 1519–1532 (2008)

    Article  MATH  Google Scholar 

  16. Karp, R.M.: A characterization of the minimum cycle mean in a digraph. Discrete Mathematics 23(3), 309–311 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  17. Krajícek, J.: Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. J. Symb. Logic 62, 457–486 (1997)

    Article  MATH  Google Scholar 

  18. Krajícek, J., Pudlák, P.: Some consequences of cryptographical conjectures for \(S^1_2\) and EF. Information and Computation 140(1), 82–94 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lovász, L., Plummer, M.D.: Matching Theory. AMS Chelsea Publ. (2009)

    Google Scholar 

  20. Möhring, R.H., Skutella, M., Stork, F.: Scheduling with AND/OR Precedence Constraints. SIAM J. Comp. 33(2), 393–415 (2004)

    Article  MATH  Google Scholar 

  21. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1995)

    Google Scholar 

  22. Pitassi, T., Santhanam, R.: Effectively polynomial simulations. In: Proceedings of First Symposium on Innovations in Computer Science, ICS (2010)

    Google Scholar 

  23. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. J. Symb. Logic 62(3), 981–998 (1997)

    Article  MATH  Google Scholar 

  24. Pudlák, P.: On the complexity of the propositional calculus. In: Sets and Proofs, Invited Papers from Logic Colloq. 1997, pp. 197–218. Cambridge Univ. Press, Cambridge (1999)

    Google Scholar 

  25. Pudlák, P.: On reducibility and symmetry of disjoint NP-pairs. Theor. Comp. Sci. 295, 323–339 (2003)

    Article  MATH  Google Scholar 

  26. Pudlák, P., Sgall, J.: Algebraic models of computation and interpolation for algebraic proof systems. In: Proof Complexity and Feasible Arithmetic. AMS (1998)

    Google Scholar 

  27. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comp. Sci. 158, 343–359 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Atserias, A., Maneva, E. (2010). Mean-Payoff Games and Propositional Proofs. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14165-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14165-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14164-5

  • Online ISBN: 978-3-642-14165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics