Skip to main content

Space-Efficient Scheduling of Stochastically Generated Tasks

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6199))

Included in the following conference series:

Abstract

We study the problem of scheduling tasks for execution by a processor when the tasks can stochastically generate new tasks. Tasks can be of different types, and each type has a fixed, known probability of generating other tasks. We present results on the random variable S σ modeling the maximal space needed by the processor to store the currently active tasks when acting under the scheduler σ. We obtain tail bounds for the distribution of S σ for both offline and online schedulers, and investigate the expected value \(\mathbb{E}{S^{\sigma}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, K., Leiserson, C.E., He, Y., Hsu, W.J.: Adaptive work-stealing with parallelism feedback. ACM TOCS 26(3) (2008)

    Google Scholar 

  2. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multiprogrammed microprocessors. Theory of Computing Systems 34, 115–144 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Athreya, K.B.: On the maximum sequence of a critical branching process. Annals of Probability 16, 502–507 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  4. Athreya, K.B., Ney, P.E.: Branching Processes. Springer, Heidelberg (1972)

    MATH  Google Scholar 

  5. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, Heidelberg (1998)

    Google Scholar 

  6. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing. Journal of the ACM 46(5), 720–748 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Borovkov, K.A., Vatutin, V.A.: On distribution tails and expectations of maxima in critical branching processes. Journal of Applied Probability 33(3), 614–622 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brázdil, T., Esparza, J., Kiefer, S.: On the memory consumption of probabilistic pushdown automata. In: Proceedings of FSTTCS, pp. 49–60 (2009)

    Google Scholar 

  9. Brázdil, T., Esparza, J., Kiefer, S., Luttenberger, M.: Space-efficient scheduling of stochastically generated tasks. Technical report (2010), http://arxiv.org/abs/1004.4286

  10. Esparza, J., Kiefer, S., Luttenberger, M.: An extension of Newton’s method to ω-continuous semirings. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 157–168. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Esparza, J., Kiefer, S., Luttenberger, M.: On fixed point equations over commutative semirings. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 296–307. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Esparza, J., Kiefer, S., Luttenberger, M.: Convergence thresholds of Newton’s method for monotone polynomial equations. In: STACS 2008, pp. 289–300 (2008)

    Google Scholar 

  13. Esparza, J., Kučera, A., Mayr, R.: Quantitative analysis of probabilistic pushdown automata: Expectations and variances. In: LICS 2005, pp. 117–126. IEEE, Los Alamitos (2005)

    Google Scholar 

  14. Esparza, J., Kučera, A., Mayr, R.: Model checking probabilistic pushdown automata. In: LICS 2004, pp. 12–21. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  15. Etessami, K., Yannakakis, M.: Recursive markov chains, stochastic grammars, and monotone systems of nonlinear equations. Journal of the ACM 56(1), 1–66 (2009)

    Article  MathSciNet  Google Scholar 

  16. Feller, W.: An introduction to probability theory and its applications, vol. I. John Wiley & Sons, Chichester (1968)

    MATH  Google Scholar 

  17. Harris, T.E.: The Theory of Branching Processes. Springer, Heidelberg (1963)

    MATH  Google Scholar 

  18. Karp, R.M., Zhang, Y.: Randomized parallel algorithms for backtrack search and branch-and-bound computation. Journal of the ACM 40(3), 765–789 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kiefer, S., Luttenberger, M., Esparza, J.: On the convergence of Newton’s method for monotone systems of polynomial equations. In: STOC 2007, pp. 217–226. ACM, New York (2007)

    Chapter  Google Scholar 

  20. Lindvall, T.: On the maximum of a branching process. Scandinavian Journal of Statistics 3, 209–214 (1976)

    MATH  MathSciNet  Google Scholar 

  21. Narlikar, G.J., Belloch, G.E.: Space-efficient scheduling of nested parallelism. ACM TOPLAS 21(1), 138–173 (1999)

    Article  Google Scholar 

  22. Nerman, O.: On the maximal generation size of a non-critical galton-watson process. Scandinavian Journal of Statistics 4(3), 131–135 (1977)

    MATH  MathSciNet  Google Scholar 

  23. Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. Academic Press, London (1970)

    MATH  Google Scholar 

  24. Pakes, A.G.: A limit theorem for the maxima of the para-critical simple branching process. Advances in Applied Probability 30, 740–756 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Spitzer, F.: Principles of Random Walk. Springer, Heidelberg (1976)

    MATH  Google Scholar 

  26. Spătaru, A.: A maximum sequence in a critical multitype branching process. Journal of Applied Probability 28(4), 893–897 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  27. Williams, D.: Probability with Martingales. Cambridge University Press, Cambridge (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brázdil, T., Esparza, J., Kiefer, S., Luttenberger, M. (2010). Space-Efficient Scheduling of Stochastically Generated Tasks. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14162-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14162-1_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14161-4

  • Online ISBN: 978-3-642-14162-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics