Skip to main content

The Compositional Structure of Multipartite Quantum Entanglement

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6199))

Included in the following conference series:

Abstract

Multipartite quantum states constitute a (if not the) key resource for quantum computations and protocols. However obtaining a generic, structural understanding of entanglement in N-qubit systems is a long-standing open problem in quantum computer science. Here we show that multipartite quantum entanglement admits a compositional structure, and hence is subject to modern computer science methods.

Recall that two N-qubit states are SLOCC-equivalent if they can be inter-converted by stochastic local (quantum) operations and classical communication. There are only two SLOCC-equivalence classes of genuinely entangled 3-qubit states, the GHZ-class and the W-class, and we show that these exactly correspond with two kinds of internal commutative Frobenius algebras on ℂ2 in the symmetric monoidal category of Hilbert spaces and linear maps, namely ‘special’ ones and ‘anti-special’ ones. Within the graphical language of symmetric monoidal categories, the distinction between ‘special’ and ‘anti-special’ is purely topological, in terms of ‘connected’ vs. ‘disconnected’.

These GHZ and W Frobenius algebras form the primitives of a graphical calculus which is expressive enough to generate and reason about representatives of arbitrary N-qubit states. This calculus refines the graphical calculus of complementary observables in [5, ICALP’08], which has already shown itself to have many applications and admit automation. Our result also induces a generalised graph state paradigm for measurement-based quantum computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: LiCS (2004), Revision: arXiv:quant-ph/0808.1023

    Google Scholar 

  2. Anders, J., Browne, D.E.: Computational power of correlations. Physical Review Letters 102 (2009), 050502. arXiv:0805.1002

    Google Scholar 

  3. Browne, D.E., Kashefi, E., Mhalla, M., Perdrix, S.: Generalized flow and determinism in measurement-based quantum computation. New Journal Physics 9, 250 (2007) arXiv:quant-ph/0702212

    Article  Google Scholar 

  4. Carboni, A., Walters, R.F.C.: Cartesian bicategories I. Journal of Pure and Applied Algebra 49, 11–32 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Coecke, B., Duncan, R.W.: Interacting quantum observables. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 298–310. Springer, Heidelberg (2008); Extended version: arXiv:0906.4725

    Chapter  Google Scholar 

  6. Coecke, B., Edwards, B., Spekkens, R.W.: Phase groups and the origin of non-locality for qubits. In: QPL 2009. ENTCS (to appear, 2010), arXiv:1003.5005

    Google Scholar 

  7. Coecke, B., Paquette, E.O., Pavlovic, D.: Classical and quantum structuralism. In: Mackie, I., Gay, S. (eds.) Semantic Techniques for Quantum Computation, pp. 29–69. Cambridge University Press, Cambridge (2009), arXiv:0904.1997

    Google Scholar 

  8. Coecke, B., Pavlovic, D.: Quantum measurements without sums. In: Chen, G., Kauffman, L., Lamonaco, S. (eds.) Mathematics of Quantum Computing and Technology, pp. 567–604. Taylor and Francis, Abington (2007), arXiv:quant-ph/0608035

    Google Scholar 

  9. Coecke, B., Pavlovic, D., Vicary, J.: A new description of orthogonal bases (2008), arXiv:0810.0812

    Google Scholar 

  10. Coecke, B., Perdrix, S.: Environment and classical channels in categorical quantum mechanics (2010) arXiv:1004.1598

    Google Scholar 

  11. Coecke, B., Wang, B.-S., Wang, Q.-L., Wang, Y.-J., Zhang, Q.-Y.: Graphical calculus for quantum key distribution. In: QPL 2009. ENTCS (to appear, 2010)

    Google Scholar 

  12. D’Hondt, E., Panangaden, P.: The computational power of the W and GHZ states. Quantum Information and Computation 6, 173–183 (2006)

    MATH  MathSciNet  Google Scholar 

  13. Dixon, L., Duncan, R., Kissinger, A.: quantomatic, http://dream.inf.ed.ac.uk/projects/quantomatic/

  14. Duncan, R., Perdrix, S.: Graph states and the necessity of Euler decomposition. In: CiE 2009. LNCS, vol. 5635. Springer, Heidelberg (2009) arXiv:0902.0500

    Google Scholar 

  15. Duncan, R., Perdrix, S.: Rewriting measurement-based quantum computations with generalised flow. Accepted for ICALP 2010 (2010)

    Google Scholar 

  16. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62 (2000), 62314.arXiv:quant-ph/0005115

    Google Scholar 

  17. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. American Journal of Physics 58, 1131–1143 (1990)

    Article  MathSciNet  Google Scholar 

  18. Joyal, A., Street, R.: The Geometry of tensor calculus I. Advances in Mathematics 88, 55–112 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hein, M., Dür, W., Eisert, J., Raussendorf, R., Van den Nest, M., Briegel, H.-J.: Entanglement in graph states and its applications (2006) arXiv:quant-ph/0602096v1

    Google Scholar 

  20. Kelly, G.M., Laplaza, M.L.: Coherence for compact closed categories. Journal of Pure and Applied Algebra 19, 193–213 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kock, J.: Frobenius Algebras and 2D Topological Quantum Field Theories. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  22. Lamata, L., Leon, J., Salgado, D., Solano, E.: Inductive entanglement classification of four qubits under SLOCC. Physical Review A 75, 22318 (2007) arXiv:quant-ph/0610233

    Google Scholar 

  23. Lamata, L., Leon, J., Salgado, D., Solano, E.: Inductive classification of multipartite entanglement under SLOCC. Physical Review A 74, (2006), 52336.arXiv:quant-ph/0603243

    Google Scholar 

  24. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Physical Review A 78 (2008), 42309.arXiv:0808.1532

    Google Scholar 

  25. Penrose, R.: Applications of negative dimensional tensors. In: Welsh, D. (ed.) Combinatorial Mathematics and its Applications, pp. 221–244. Academic Press, London (1971)

    Google Scholar 

  26. Selinger, P.: Finite dimensional Hilbert spaces are complete for dagger compact closed categories. In: QPL 2008. ENTCS (to appear, 2010)

    Google Scholar 

  27. Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke, B. (ed.) New Structures for Physics, pp. 275–337. Springer, Heidelberg (2009) arXiv:0908.3347

    Google Scholar 

  28. Verstraete, F., Dehaene, J., De Moor, B., Verschelde, H.: Four qubits can be entangled in nine different ways. Physical Review A 65 (2002) 52112.arXiv:quant-ph/0109033

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coecke, B., Kissinger, A. (2010). The Compositional Structure of Multipartite Quantum Entanglement. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14162-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14162-1_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14161-4

  • Online ISBN: 978-3-642-14162-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics