Skip to main content

Sparse Reliable Graph Backbones

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6199))

Included in the following conference series:

Abstract

Given a connected graph G and a failure probability p(e) for each edge e in G, the reliability of G is the probability that G remains connected when each edge e is removed independently with probability p(e). In this paper it is shown that every n-vertex graph contains a sparse backbone, i.e., a spanning subgraph with O(n logn) edges whose reliability is at least (1 − n  − Ω(1)) times that of G. Moreover, for any pair of vertices s, t in G, the (s,t)-reliability of the backbone, namely, the probability that s and t remain connected, is also at least (1 − n  − Ω(1)) times that of G. Our proof is based on a polynomial time randomized algorithm for constructing the backbone. In addition, it is shown that the constructed backbone has nearly the same Tutte polynomial as the original graph (in the quarter-plane x ≥ 1, y > 1), and hence the graph and its backbone share many additional features encoded by the Tutte polynomial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Frieze, A., Welsh, D.: Polynomial time randomized approximation schemes for Tutte-Gröthendieck invariants: the dense case. Random Struct. Algorithms 6(4), 459–478 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ball, M.O., Colbourn, C.J., Provan, J.S.: Network reliability. In: Handbook of Operations Research: Network Models, pp. 673–762. Elsevier North-Holland (1995)

    Google Scholar 

  3. Benczúr, A., Karger, D.R.: Approximating s − t minimum cuts in \(\tilde{O} (n^2)\) time. In: Proc. 28th ACM Symp. on the Theory of Computing (STOC), pp. 47–55 (1996)

    Google Scholar 

  4. Bollobás, B.: Modern Graph Theory. Graduate texts in mathematics. Springer, Berlin (1998)

    MATH  Google Scholar 

  5. Brylawski, T.H., Oxley, J.G.: The Tutte polynomial and its applications. In: White, N. (ed.) Matroid Applications, pp. 123–225. Cambridge Univ. Press, Cambridge (1992)

    Chapter  Google Scholar 

  6. Batson, J.D., Spielman, D.A., Srivastava, N.: Twice-ramanujan sparsifiers. In: Proc. of the 41st ACM Symp. on Theory of Computing (STOC), pp. 255–262 (2009)

    Google Scholar 

  7. Goldberg, L.A., Jerrum, M.: Inapproximability of the Tutte polynomial. Inf. Comput. 206(7), 908–929 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jaeger, F., Vertigan, D.L., Welsh, D.J.A.: On the computational complexity of the Jones and Tutte polynomials. Math. Proc. Camb. Phil. SOC. 108, 35–53 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jerrum, M., Sinclair, A.: Polynomial-time approximation algorithms for the Ising model. SIAM J. Comput. (SICOMP) 22(5), 1087–1116 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Karger, D.R.: A randomized fully polynomial time approximation scheme for the all-terminal network reliability problem. SIAM J. Comput. (SICOMP) 29(2), 492–514 (1999)

    Article  MathSciNet  Google Scholar 

  11. Karger, D.R.: Random sampling in cut, flow, and network design problems. Mathematics of Operations Research (MOR) 24(2), 383–413 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lomonosov, M.V., Polesskii, V.P.: Lower bound of network reliability. Probl. Peredachi Inf. 8(2), 47–53 (1972)

    MATH  MathSciNet  Google Scholar 

  13. Moore, E.F., Shannon, C.E.: Reliable circuits using less reliable relays. J. Franklin Inst.  262, 191–208, 263, 281–297 (1956)

    Article  MathSciNet  Google Scholar 

  14. Peleg, D., Schäffer, A.A.: Graph spanners. J. of Graph Theory 13, 99–116 (1989)

    Article  MATH  Google Scholar 

  15. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J. on Computing 18, 740–747 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Spielman, D.A., Teng, S.-H.: Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In: Proc. of the 36th ACM Symp. on Theory of Computing (STOC), pp. 81–90 (2004)

    Google Scholar 

  17. Spielman, D.A., Teng, S.-H.: Spectral sparsification of graphs (2008), http://arxiv.org/abs/0808.4134

  18. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. Comput. (SICOMP) 8(3), 410–421 (1979)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chechik, S., Emek, Y., Patt-Shamir, B., Peleg, D. (2010). Sparse Reliable Graph Backbones. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14162-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14162-1_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14161-4

  • Online ISBN: 978-3-642-14162-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics