Skip to main content

On the Characteristics of Sequential Decision Problems and Their Impact on Evolutionary Computation and Reinforcement Learning

  • Conference paper
Artifical Evolution (EA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5975))

Abstract

This work provides a systematic review of the criteria most commonly used to classify sequential decision problems and discusses their impact on the performance of reinforcement learning and evolutionary computation. The paper also proposes a further division of one class of decision problems into two subcategories, which delimits a set of decision tasks particularly difficult for optimization techniques in general and evolutionary methods in particular. A simple computational experiment is presented to illustrate the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barreto, A.M.S., Anderson, C.W.: Restricted gradient-descent algorithm for value-function approximation in reinforcement learning. Artificial Intelligence 172(4-5), 454–482 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Boyan, J.A., Moore, A.W.: Generalization in reinforcement learning: Safely approximating the value function. In: Advances in Neural Information Processing Systems, pp. 369–376. MIT Press, Cambridge (1995)

    Google Scholar 

  3. Bull, L., Kovacs, T. (eds.): Foundations of Learning Classifier Systems (Spring 2005)

    Google Scholar 

  4. Drugowitsch, J.: Design and Analysis of Learning Classifier Systems—A Probabilistic Approach. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  5. Goldberg, D.: Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  6. Gomez, F., Schmidhuber, J., Miikkulainen, R.: Accelerated neural evolution through cooperatively coevolved synapses. Journal of Machine Learning Research 9, 937–965 (2008)

    MathSciNet  Google Scholar 

  7. Gomez, F.J.: Robust non-linear control through neuroevolution. Ph.D. thesis, The University of Texas at Austin (2003), Technical Report AI-TR-03-303

    Google Scholar 

  8. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, Heidelberg (2002)

    Google Scholar 

  9. Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. Journal of Machine Learning Research 4, 1107–1149 (2003)

    Article  MathSciNet  Google Scholar 

  10. Moriarty, D.E.: Symbiotic Evolution of Neural Networks in Sequential Decision Tasks. Ph.D. thesis, The University of Texas at Austin (1997), Technical Report UT-AI97-257

    Google Scholar 

  11. Moriarty, D.E., Miikkulainen, R.: Efficient reinforcement learning through symbiotic evolution. Machine Learning 22(1–3), 11–32 (1996)

    Google Scholar 

  12. Moriarty, D.E., Schultz, A.C., Grefenstette, J.J.: Evolutionary algorithms for reinforcement learning. Journal of Artificial Intelligence Research 11, 241–276 (1999)

    MATH  Google Scholar 

  13. Puterman, M.L.: Markov Decision Processes—Discrete Stochastic Dynamic Programming. John Wiley & Sons, Inc., Chichester (1994)

    MATH  Google Scholar 

  14. Randløv, J., Alstrøm, P.: Learning to drive a bicycle using reinforcement learning and shaping. In: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 463–471. Morgan Kaufmann Publishers Inc., San Francisco (1998)

    Google Scholar 

  15. Stanley, K.O.: Efficient evolution of neural networks through complexification. Ph.D. thesis, The University of Texas at Austin (2004), Technical Report AI-TR-04-314

    Google Scholar 

  16. Sutton, R.S.: Learning to predict by the methods of temporal differences. Machine Learning 3, 9–44 (1988)

    Google Scholar 

  17. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  18. Tsitsiklis, J.N., Roy, B.V.: Feature-based methods for large scale dynamic programming. Machine Learning 22, 59–94 (1996)

    MATH  Google Scholar 

  19. Tsitsiklis, J.N., Roy, B.V.: An analysis of temporal-difference learning with function approximation. IEEE Transactions on Automatic Control 42, 674–690 (1997)

    Article  MATH  Google Scholar 

  20. White, D.J.: Real applications of Markov decision processes. Interfaces 15, 73–83 (1985)

    Article  Google Scholar 

  21. Whitley, D.: The GENITOR algorithm and selective pressure:why rank-based allocation of reproductive trials is best. In: Schaffer, J. (ed.) Proceedings of the Third International Conference on Genetic Algorithms and their Applications, pp. 116–121. Morgan Kaufmann, San Francisco (1989)

    Google Scholar 

  22. PWhitley, D., Dominic, S., Das, R., Anderson, C.W.: Genetic reinforcement learning for neurocontrol problems. Machine Learning 13(2-3), 259–284 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barreto, A.M.S., Augusto, D.A., Barbosa, H.J.C. (2010). On the Characteristics of Sequential Decision Problems and Their Impact on Evolutionary Computation and Reinforcement Learning. In: Collet, P., Monmarché, N., Legrand, P., Schoenauer, M., Lutton, E. (eds) Artifical Evolution. EA 2009. Lecture Notes in Computer Science, vol 5975. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14156-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14156-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14155-3

  • Online ISBN: 978-3-642-14156-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics