Advertisement

A Model for Dissipation: Cascade SDE with Markov Regime-Switching and Dirichlet Prior

  • D. Bernard
  • A. Tossa
  • R. Emilion
  • S. K. Iyer
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)

Abstract

Cascade Stochastic Differential Equation (SDE), a continuous time model for energy dissipation in turbulence, is a generalization of the Yaglom discrete cascade model. We extend this SDE to a model in random environment by assuming that its two parameters are switched by a continuous time Markov chain whose states represent the states of the environment. Moreover, a Dirichlet process is placed as a prior on the space of sample paths of this chain. We propose a Bayesian estimation method of this model which is tested both on simulated data and on real data of wind speed measured at the entrance of the mangrove ecosystem in Guadeloupe.

Keywords

Cascade model Dirichlet process dissipation Mangrove Markov regime switching random environment Stochastic Differential equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernard, D., d’Alexis, C.: Experimental study of flow in a forest cover: Application to the Guadeloupe mangrove ecosystem. Research technical report II, 20 p. (2008)Google Scholar
  2. 2.
    Brevignon: Atlas Climatique de la Guadeloupe 150, 395–409 (2006)Google Scholar
  3. 3.
    Dupont, S., Brunet, Y.: Simulation of turbulent flow in an urban forested park damaged by a windstorm. Boundary-Layer Meteorology 120, 133–161 (2006)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Foudhil, H.: Développement d’un modèle numérique de dispersion atmosphérique de particules à l’échelle d’un paysage hétérogène. Thèse de doctorat, Université de Bordeaux 1, Bordeaux, pp. 12–87 (2002)Google Scholar
  6. 6.
    Foudhil, H., Brunet, Y., Caltagirone, J.P.: A k-Model for Atmospheric Flow Over Heterogeneous Landscapes. Env. Fluid Mech. 5, 247–265 (2005)CrossRefGoogle Scholar
  7. 7.
    Liu, J., Chen, J.M., Black, T.A., Novak, M.D.: k-Modelling of Turbulent Air Flow Downwind of a Model Forest Edge. Boundary-Layer Meteorology 77, 21–44 (1996)CrossRefGoogle Scholar
  8. 8.
    Schmitt, F.G.: A causal Stochastic multifractal stohastic equation and its statistical properties. The European Physical Journal B 34, 85–98 (2003)CrossRefGoogle Scholar
  9. 9.
    Schmitt, F.G.: About Boussinesq’s turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity. C. R.Mécanique 335, 617–627 (2007)zbMATHCrossRefGoogle Scholar
  10. 10.
    Schmitt, F.G., Marsan, D.: Stochastic equations generating continuous multiplicative cascades. The European Physical Journal B 20, 3–6 (2001)Google Scholar
  11. 11.
    Watanabe, T.: Large-Eddy Simulation of Coherent Turbulence Structures Associated with Scalar Ramps Over Plant Canopies. Boundary-Layer Meteorology 112, 307–341 (2004)CrossRefGoogle Scholar
  12. 12.
    Yaglom, A.M.: The influence of fluctuations in energy dissipation on the shape of turbulent characteristics in the inertial interval. Soviet Physics Doklady 11, 26–29 (1966)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • D. Bernard
    • 1
  • A. Tossa
    • 2
  • R. Emilion
    • 3
  • S. K. Iyer
    • 4
  1. 1.LPATUniversité Antilles-GuyanePointe-à-Pitre
  2. 2.CEREMADEUniversité Paris DauphineParisFrance
  3. 3.MAPMOUniversité d’OrléansOrléans Cedex 2France
  4. 4.Department of MathematicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations