Advertisement

High Reynolds Number Wall-Bounded Turbulence and a Proposal for a New Eddy-Based Model

  • Alexander J. Smits
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)

Abstract

We propose a model for turbulent wall-bounded flows based on new understanding of the turbulent structure. Specifically, we identify three basic eddy motions: (1) the Large-Scale Motions (LSMs) which are related to the vortex packets defined by Head and Bandyopadhyay (1981) and Adrian et al. (2000); (2) the Very Large-Scale Motions (VLSMs) interpreted by Liu et al. (2001) and Balakumar and Adrian (2007) in terms of a concatenation of the outer layer bulges and by Monty et al. (2007) in terms of the meandering “superstructures” observed in pipe, channel and boundary layers; and (3) the streaks associated with longitudinal vortex-like structures in the near-wall region, as identified by Kline et al. (1967). The new model maps the attributes of each eddy type in physical space to wavenumber space. Experimental data are then used to determine the scaling behavior of the three basic eddy motions in wavenumber space, and the scaling behavior of the Reynolds stress behavior is recovered b! y integrating over all wavenumbers.

Keywords

Turbulence Intensity Turbulent Boundary Layer High Reynolds Number Streamwise Component Streamwise Turbulence Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adrian, R.C., Meinhart, C.D., Tomkins, C.D.: Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 1–54 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Balakumar, B.J., Adrian, R.J.: Large- and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. A 365, 665–681 (2007)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bailey, S.C.C., Hultmark, M., Smits, A.J., Schultz, M.P.: Azimuthal structure of turbulence in high Reynolds number pipe flow. J. Fluid Mech. 615, 121–138 (2008)zbMATHCrossRefGoogle Scholar
  4. 4.
    Del Álamo, J.C., Jiménez, J., Zandonade, P., Moser, R.D.: Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135–144 (2004)zbMATHCrossRefGoogle Scholar
  5. 5.
    Dussauge, J.P., Smits, A.J.: Characteristic scales for energetic eddies in turbulent supersonic boundary layers. Experimental Thermal and Fluid Science 14(1) (1997)Google Scholar
  6. 6.
    Fernando, E.M., Smits, A.J.: The kinematics of simple vortex loop arrays, AIAA Paper 88-3657. In: First National Fluid Dynamics Conference, Cincinnati, Ohio, July 24-28 (1988)Google Scholar
  7. 7.
    Ganapathisubramani, B., Longmire, E.K., Marusic, I.: Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 35–46 (2003)zbMATHCrossRefGoogle Scholar
  8. 8.
    Guala, M., Hommema, S.E., Adrian, R.J.: Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521–542 (2006)zbMATHCrossRefGoogle Scholar
  9. 9.
    Head, M.R., Bandyopadhyay, P.R.: New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297–338 (1981)CrossRefGoogle Scholar
  10. 10.
    Hutchins, N., Ganapathisubramani, B., Marusic, I.: Dominant spanwise Fourier modes and the existence of very large scale coherence in turbulent boundary layers. In: Proc. 15th Australasian Fluid Mechanics Conference, Sydney, Australia (2004)Google Scholar
  11. 11.
    Hutchins, N., Marusic, I.: Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 1–28 (2007a)zbMATHCrossRefGoogle Scholar
  12. 12.
    Hutchins, N., Marusic, I.: Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. A 365, 647–664 (2007b)zbMATHCrossRefGoogle Scholar
  13. 13.
    Kim, K.C., Adrian, R.J.: Very large-scale motion in the outer layer. Phys. Fluids 11(2), 417–422 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kline, S.J., Reynolds, W.C., Schraub, F.A., Runstadler, P.W.: The structure of turbulent boundary layers. J. Fluid Mech. 30, 741–773 (1967)CrossRefGoogle Scholar
  15. 15.
    Liu, Z., Adrian, R.J., Hanratty, T.J.: Large-scale modes of turbulent channel flow: transport and structure. J. Fluid Mech. 448, 53–80 (2001)zbMATHCrossRefGoogle Scholar
  16. 16.
    Lundgren, T.S.: Strained spiral vortex model for turbulent ne structure. Phys. Fluids 25, 2193–2203 (1982)zbMATHCrossRefGoogle Scholar
  17. 17.
    Marusic, I., Uddin, M., Perry, A.E.: Similarity law for the streamwise turbulence intensity in zero-pressure-gradient turbulent boundary layers. Phys. Fluids 9(12), 3718–3726 (1997)CrossRefGoogle Scholar
  18. 18.
    Marusic, I., Kunkel, G.J.: Streamwise turbulence intensity formulation for flat-plate boundary layers. Phys. Fluids 15(8), 2461–2464 (2003)CrossRefGoogle Scholar
  19. 19.
    Meinhart, C.D., Adrian, R.J.: On the existence of uniform momentum zones in a turbulent boundary layer. Phys. Fluids 7(4), 694–696 (1995)CrossRefGoogle Scholar
  20. 20.
    Misra, A., Pullin, D.I.: A vortex-based subgrid stress model for large-eddy simulation. Phys. Fluids 9, 2443–2454 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Monty, J.P., Stewart, J.A., Williams, R.C., Chong, M.S.: Large-scale features in turbulent pipe and channel flows. J. Fluid Mech. 589, 147–156 (2007)zbMATHCrossRefGoogle Scholar
  22. 22.
    Morrison, J.F., McKeon, B.J., Jiang, W., Smits, A.J.: Scaling of the streamwise velocity component in turbulent pipe flow. J. Fluid Mech. 508, 99–131 (2004)zbMATHCrossRefGoogle Scholar
  23. 23.
    Nickels, T.B., Marusic, I., Hafez, S.M., Hutchins, N., Chong, M.S.: Some predictions of the attached eddy model for a high Reynolds number boundary layer Phil. Trans. R. Soc. Lond. A 365, 807–822 (2007)zbMATHCrossRefGoogle Scholar
  24. 24.
    Perry, A.E., Henbest, S.M., Chong, M.S.: An experimental study of the turbulence structure in smooth- and rough- wall boundary layers. J. Fluid Mech. 177, 437–466 (1986)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Perry, A.E., Li, J.D.: Experimental support for the attached-eddy hypothesis in zero-pressure- gradient turbulent boundary layers. J. Fluid Mech. 218, 405–438 (1990)CrossRefGoogle Scholar
  26. 26.
    Perry, A.E., Marusic, I., Jones, M.B.: On the streamwise evolution of turbulent boundary layers in arbitrary pressure gradients. J. Fluid Mech. 461, 61–91 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Tennekes, H., Lumley, J.L.: A First Course in Turbulence. The MIT Press, Cambridge (1972)Google Scholar
  28. 28.
    Tomkins, C.D., Adrian, R.J.: Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 37–74 (2003)zbMATHCrossRefGoogle Scholar
  29. 29.
    Tomkins, C.D., Adrian, R.J.: Energetic spanwise modes in the logarithmic layer of a turbulent boundary layer. J. Fluid Mech. 545, 141–162 (2005)zbMATHCrossRefGoogle Scholar
  30. 30.
    Townsend, A.A.: The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press, Cambridge (1976)zbMATHGoogle Scholar
  31. 31.
    Zhou, J., Adrian, R.J., Balachandar, S., Kendall, T.M.: Mechanisms for generating coherent packets of hairpin vortices in channel flows. J. Fluid Mech. 387, 353–396 (1999)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alexander J. Smits
    • 1
  1. 1.Princeton UniversityPrincetonU. S. A

Personalised recommendations