Skip to main content

Numerical Study of Turbulence–Wave Interaction

  • Conference paper
Turbulence and Interactions

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 110))

  • 1862 Accesses

Abstract

We develop numerical capabilities of direct numerical simulation and large-eddy simulation for turbulent flows with waving boundaries, which can be coupled with nonlinear surface wave simulation, to study the mechanism of turbulence-wave interaction. Simulation of turbulence in the vicinity of surface waves with various wave conditions reveals strong dependence of the statistics, structures, and dynamics of the turbulent flow on wave characteristics including wave phase, wave age, and wave nonlinearity. Simulation of nonlinear wave evolution provides wave growth quantification in a phase-resolving context, which is valuable for deterministic wavefield prediction. The results obtained in this study suggest the importance of two-way coupling between turbulence and waves in their dynamic evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Donelan, M.A.: Wind-induced growth and attenuation of laborotary waves. In: Sajjadi, S.G., Thomas, N.H., Hunt, J.C.R. (eds.) Wind-over-Wave Couplings, pp. 183–194. Clarendon press, Oxford (1999)

    Google Scholar 

  2. Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965)

    Article  MATH  Google Scholar 

  3. Hasselmann, K., Barnett, T.P., Bouws, E., Carlson, H., Cartwright, D.E., Enke, K., Ewing, J.A., Gienapp, H., Hasselmann, D.E., Kruseman, P., Meerburg, A., Mller, P., Olbers, D.J., Richter, K., Sell, W., Walden, H.: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergnzungsheft zur Deutschen Hydrographischen Zeitschrift Reihe A(8) (12) (1973)

    Google Scholar 

  4. Kihara, N., Hanazaki, H., Mizuya, T., Ueda, H.: Relationship between airflow at the critical height and momentum transfer to the tranveling waves. Phys. Fluids 19, 015102 (2007)

    Article  Google Scholar 

  5. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys. 59, 308–323 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. Lighthill, M.J.: Physical interpretation of the mathematical theory of wave generation by wind. J. Fluid Mech. 14, 385–398 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  7. Mei, C.C., Stiassnie, M., Yue, D.K.P.: Theory and Applications of Ocean Surface Waves. Part 2. Nonlinear Aspects. World Scientific, New Jersey (2005)

    Google Scholar 

  8. Miles, J.W.: On the generation of surface waves by shear flows. J. Fluid Mech. 3, 185–204 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  9. Miles, J.W.: Surface-wave generation revisited. J. Fluid Mech. 256, 427–441 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Phillips, O.M.: The Dynamics of The Upper Ocean, 2nd edn. Cambridge University Press, Cambridge (1977)

    MATH  Google Scholar 

  11. Plant, W.J.: A relationship between wind stress and wave slope. J. Geophys. Res. 87, 1961–1967 (1982)

    Article  Google Scholar 

  12. Shen, L., Zhang, X., Yue, D.K.P., Triantafyllou, M.S.: Turbulent flow over a flexible wall undergoing a streamwise tranvelling wave motion. J. Fluid Mech. 484, 197–221 (2003)

    Article  MATH  Google Scholar 

  13. Sullivan, P.P., McWilliams, J.C., Moeng, C.-H.: Simulation of turbulent flow over idealized water waves. J. Fluid Mech. 404, 47–85 (2000)

    Article  MATH  Google Scholar 

  14. Zakharov, V.E.: Stability of periodic wave of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 2, 190–194 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shen, L. (2010). Numerical Study of Turbulence–Wave Interaction. In: Deville, M., Lê, TH., Sagaut, P. (eds) Turbulence and Interactions. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14139-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14139-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14138-6

  • Online ISBN: 978-3-642-14139-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics