Advertisement

Numerical Simulation and Statistical Modeling of Inertial Droplet Coalescence in Homogeneous Isotropic Turbulence

  • Dirk Wunsch
  • Pascal Fede
  • Olivier Simonin
  • Philippe Villedieu
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)

Abstract

A comparative parameter study is performed in order to analyze the influence of turbulence on the rate of droplet coalescence. Therefore, Direct Numerical Simulations (DNS) of the fluid turbulence are coupled with a Lagrangian tracking of the particle phase (DPS) accounting for collisions leading to coalescence and to a broad droplet size distribution. In addition the accuracy of stochastic collision models is evaluated by comparison of Monte-Carlo predictions with the obtained results from the DNS/DPS simulations and statistical collision models are evaluated.

Keywords

Direct Numerical Simulation Particle Inertia Stokes Number Collision Model Homogeneous Isotropic Turbulence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashgriz, N., Poo, J.Y.: Coalescence and separation in binary collisions of liquid drops. J. Fluid. Mech. 221, 183–204 (1990)CrossRefGoogle Scholar
  2. 2.
    Babovsky, H.: On a simulation scheme for the Boltzmann equation. Mth Meth. in Appl. Sc. 8, 223–233 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Balachandar, S., Maxey, M.R.: Method for evaluating fluid velocities in spectral simulations of turbulence. J. of Comput Physics 83, 96–125 (1988)CrossRefGoogle Scholar
  4. 4.
    Estrade, J.P.: Etude expérimentale et numérique de la collision de gouttelettes. Ecole national supérieure de l’aéronautique et de l’espace: Thèse (1998)Google Scholar
  5. 5.
    Eswaran, V., Pope, S.B.: An examination of forcing in direct numerical simulations of turbulence. Computers and Fluids 16(3), 257–278 (1988)zbMATHCrossRefGoogle Scholar
  6. 6.
    Fede, P., Simonin, O.: Modelling of kinetic energy transfer by collision in a non-settling binary mixture of particles suspended in a turbulent homogeneous isotropic flow. In: Proceedings of the ASME FEDSM2003 FEDSM2003–45735 (2003)Google Scholar
  7. 7.
    Fede, P., Simonin, O., Villedieu, P.: Monte-Carlo simulation of colliding particles in gas-solid turbulent flows from a joint fluid-particle PDF equation. In: Proceedings of the ASME FEDSM2002 FEDSM2002–31226 (2002)Google Scholar
  8. 8.
    Hylkema, J.J., Villedieu, P.: A random particle method to simulate coalescence phenomena in dense liquid sprays. In: Proc. of 16th Int. Conf. on Numerical Methods in Fluid Dynamics. Lecture notes in physics, vol. 515. Springer, Heidelberg (1999)Google Scholar
  9. 9.
    Laviéville, J., Deutsch, E., Simonin, O.: Large Eddy Simulation of interaction between colliding particles and a homogeneous isotropic turbulence field. In: 6th Int Symp on Gas-Solid Flows, FEDSM 2005, vol. 228, pp. 347–357 (2005)Google Scholar
  10. 10.
    Qian, J., Law, C.K.: Regimes of coalescence and separation in droplet collision. J. Fluid Mech. 331, 59–80 (1997)CrossRefGoogle Scholar
  11. 11.
    Schiller, L., Naumann, A.: A drag coefficient correlation. VDI Zeitung 77, 318–320 (1935)Google Scholar
  12. 12.
    Simonin, O.: Combustion and turbulence in two-phase-flows. Lecture Series 1996-02. von Karman Institute for Fluid Dynamics (1996)Google Scholar
  13. 13.
    Simonin, O., Février, P., Laviéville, J.: On the spatial distribution of heavy-particle velocities in turbulent flow: from continuous field to particulate chaos. Journal of Turbulence (2002), doi:10.1088/1468-5248/3/1/040Google Scholar
  14. 14.
    Tchen, C.M.: Mean value and correlation problems connected with the motion of small particles suspended in a turbulent fluid. Thesis: Delft, Martinus Nijhoff, The Hague (1947)Google Scholar
  15. 15.
    Villedieu, P., Simonin, O.: Modeling of coalescence in turbulent gas-droplet flows. Comm. Math. Sci. Suppl. Issue 1, 13–33 (2004)MathSciNetGoogle Scholar
  16. 16.
    Wunsch, D., Fede, P., Simonin, O.: Development and validation of a binary collision detection algorithm for a poly-dispersed particle mixture. In: Proceedings of ASME FEDSM2008 FEDSM2008–55159 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Dirk Wunsch
    • 1
    • 2
  • Pascal Fede
    • 1
    • 2
  • Olivier Simonin
    • 1
    • 2
  • Philippe Villedieu
    • 3
  1. 1.Université de Toulouse, INPT, UPS, IMFTToulouseFrance
  2. 2.CNRSInstitut de Mécanique des Fluides de ToulouseToulouseFrance
  3. 3.ONERA; DMAEToulouseFrance

Personalised recommendations