On the Dynamics of High Reynolds Number Turbulent Axisymmetric and Plane Separating/Reattaching Flows

  • Pierre-Élie Weiss
  • Sébastien Deck
  • Jean-Christophe Robinet
  • Pierre Sagaut
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)


The present work focuses on the intrinsic properties of an axisymmetric separating/reattaching flow. A numerical simulation of a compressible flow over a cylinder extended by another cylinder of smaller diameter is performed at a Reynolds number based on the diameter of the larger cylinder of 1.2 × 106. Statistical and fluctuating properties are compared with the available experimental data and those of two additional configurations. First the plane counterpart of the axisymmetric case allows us to assess the influence of three-dimensionality. Then a double backward facing step designed from the half upper part of the plane case permits us to survey the flow interactions. Finally a linear stability analysis is coupled with two-point correlations unveiling the importance of the highest coherent modes in the flow behaviour.


High Reynolds Number Strouhal Number Bluff Body Plane Case Absolute Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bers, A.: Linear waves and instabilities. In: Peyraud, C.D.J. (ed.) Physique des Plasmas, p. 117, Gordon and Breach (1975)Google Scholar
  2. 2.
    Briggs, R.J.: Electron-Stream Interaction with Plasmas. MIT Press, Cambridge (1964)Google Scholar
  3. 3.
    Chomaz, J.M., Huerre, P., Redekopp, L.M.: A frequency selection criterion in spatially developing flows. Studies in Applied Mathematics 84, 119–144 (1991)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Deck, S.: Zonal-detached-eddy simulation of the flow around a high-lift configuration. AIAA Journal 43(11), 2372–2384 (2005)CrossRefGoogle Scholar
  5. 5.
    Deck, S., Thorigny, P.: Unsteadiness of an axisymmetric separating-reattaching flow. Phys. Fluids 19, 065103 (2007)CrossRefGoogle Scholar
  6. 6.
    Deprés, D., Reijasse, P., Dussauge, J.P.: Analysis of unsteadiness in afterbody transonic flows. AIAA Journal 42(12), 2541–2550 (2004)CrossRefGoogle Scholar
  7. 7.
    Ho, C., Huerre, P.: Perturbated free shear layer. Ann. Rev. Fluid Mech. 16, 365–424 (1984)CrossRefGoogle Scholar
  8. 8.
    Meliga, P., Reijasse, P.: Unsteady transonic flow behind an axisymmetric afterbody with two boosters. In: Proceedings of the 25th AIAA Applied Aerodynamics Conference, Miami, June 2007, vol. 2007-4564 (2007)Google Scholar
  9. 9.
    Monkewitz, P.A., Nguyen, L.N.: Absolute instability in the near-wake of two-dimensional bluff bodies. J. Fluids Struct. 1, 165–184 (1987)zbMATHCrossRefGoogle Scholar
  10. 10.
    Roshko, A.: On the wake and drag of bluff bodies. J. Aero. Sci. 22, 124–132 (1955)zbMATHGoogle Scholar
  11. 11.
    Sandberg, R.D., Fasel, H.F.: Numerical investigation of transitional supersonic axisymmetric wakes. J. Fluid Mech. 563, 1–41 (2006)zbMATHCrossRefGoogle Scholar
  12. 12.
    Weiss, P.E., Deck, S., Sagaut, P.: Zonal-Detached-Eddy-Simulation of a Two-Dimensional and Axisymmetric Separating/Reattaching Flow. In: AIAA paper 2008-4377 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pierre-Élie Weiss
    • 1
  • Sébastien Deck
    • 1
  • Jean-Christophe Robinet
    • 2
  • Pierre Sagaut
    • 3
  1. 1.ONERA, Applied Aerodynamics DepartmentMissiles Hypersonic Launchers UnitMeudonFrance
  2. 2.SINUMEF - Arts et Métiers - ParisTechParisFrance
  3. 3.Institut Jean Le Rond d’AlembertUniversité Pierre et Marie CurieParis Cedex 05France

Personalised recommendations