Advertisement

An a Priori Study for the Modeling of Subgrid Terms in Multiphase Flows

  • P. Trontin
  • S. Vincent
  • J. L. Estivalezes
  • J. P. Caltagirone
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)

Abstract

In the framework of turbulent interfacial multiphase flows, an a priori study is performed in the case of the turbulence/interface interaction. Density and viscosity ratios are set to 1 to perform a parametric study on surface tension forces. When using the ghost-fluid method, subgrid-scale terms deriving from jump conditions appear in the pressure gradient and viscous terms. A model is tested for advective SGS terms deriving from both the momentum equation and the advection of the interface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comp. 22, 745–762 (1968)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Couderc, F.: Développement d’un code de calcul pour la simulation d’écoulements de fluides non miscibles. Application à la désintégration assistée d’un jet liquide par un courant gazeux. PhD thesis (2007)Google Scholar
  3. 3.
    Fedkiw, R., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457–492 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Germano, M.: A proposal for a redefinition of the turbulent stresses in the filtered Navier-Stokes equations. Phys. Fluids. 29, 2323–2324 (1986)zbMATHCrossRefGoogle Scholar
  5. 5.
    Osher, S., Sethian, J.: Fronts Propagating with Curvature Dependant Speed: Algoritms based on Hamilton-Jacobi Formulations. J. Comput. Phys. 79, 12–49 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. ICASE - NASA Report (1997)Google Scholar
  7. 7.
    Sussman, M., Smereka, P., Osher, S.: A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow. J. Comput. Phys. 114, 146–159 (1994)zbMATHCrossRefGoogle Scholar
  8. 8.
    Trottenberg, U., Schuller, A.: Multigrid. Academic Press, Inc., London (2001)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • P. Trontin
    • 1
  • S. Vincent
    • 2
  • J. L. Estivalezes
    • 1
  • J. P. Caltagirone
    • 2
  1. 1.ONERA/DMAEToulouseFrance
  2. 2.Université Bordeaux I, TREFLE-ENSCPB, UMR 8508Pessac CedexFrance

Personalised recommendations