Stochastic Synchronization of the Wall Turbulence

  • Sedat Tardu
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)


Instantaneous amplitude and phase concept emerging from analytical signal formulation is applied to the wavelet coefficients of streamwise velocity fluctuations in the buffer layer of a near wall turbulent flow. Experiments and direct numerical simulations show both the existence of long periods of inert zones wherein the local phase is constant. These regions are separated by random phase jumps. These behaviours are reminiscent of phase synchronization phenomena observed in stochastic chaotic systems. The lengths of the constant phase inert (laminar) zones reveal a type-I intermittency behaviour. The observed phenomena are related to the footprint of coherent structures convecting in the low buffer layer that synchronizes the wall turbulence.


Chaotic System Direct Numerical Simulation Coherent Structure Phase Synchronization Chaos Synchronization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aulin, T., Sundberg, C.E.-W.: Continuous phase modulation. IEEE Trans. Commun. COM-29 (1981)Google Scholar
  2. 2.
    Boccaletti, S., Kurths, J., Osipov, G., Valladeres, D.L., Zhou, C.S.: The synchronization of chaotic systems. Phys. Rep. 366, 1 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Freund, J., Neiman, A., Schiemansky-Geier, L.: Analytic description of noise induced synchronization. Europhysics Letters 50, 8 (2000)CrossRefGoogle Scholar
  4. 4.
    Granlund, G.H., Knutsson, H.: Signal processing for computer vision. Kluwer Academic Publishers, Dordrecht (1995)Google Scholar
  5. 5.
    Mallat, S., Zhong, S.: IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 710 (1992)Google Scholar
  6. 6.
    Pikovsky, A.S., Rosenblum, M.G., Kurths, J.: Synchronization. A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    Rosenblum, M., Pikovsky, A.S., Kurths, J.: Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76, 1804 (1996)CrossRefGoogle Scholar
  8. 8.
    Tardu, S., Doche, O.: Active control effectiveness and synchronization of wall turbulence under localized imposed unsteadiness. Phys. Fluids 19, 108103–108107 (2007)CrossRefGoogle Scholar
  9. 9.
    Tardu, S.: Stochastic synchronization of the near wall turbulence. Phys. Fluids 20, 045105 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sedat Tardu
    • 1
  1. 1.LEGIGrenoble, Cedex 9France

Personalised recommendations