Advertisement

Computations of the Flow around a Wind Turbine: Grid Sensitivity Study and the Influence of Inlet Conditions

  • R. Z. Szasz
  • L. Fuchs
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)

Abstract

The flow around a complete model wind turbine is computed using LES and the immersed boundary method. The influence of inlet velocity profile and turbulence level is evaluated. The inlet velocity profile was found to have major influence in the upper regions of the flow field. The imposed turbulence level had no major influence on the turbulent spectra but it’s effect is clearly seen on the generated vortices.

Keywords

Wind Turbine Large Eddy Simulation Axial Velocity Grid Resolution Angular Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crespo, A., Hernandez, J., Frandsen, S.: Survey of modelling methods for wind turbine wakes and wind farms. Wind Energy 2, 1–24 (1999)CrossRefGoogle Scholar
  2. 2.
    Grauthoff, M.: Utilization of wind energy in urban areas – chance or utopian dream? Energy and Buildings 15-16, 517–523 (1990/1991)CrossRefGoogle Scholar
  3. 3.
    Gullbrand, J., Bai, X.S., Fuchs, L.: High-order cartesian grid method for calculation of incompressible turbulent flows. Int. J. Numerical Methods in Fluids 36, 687–709 (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Hansen, M., Sørensen, J., Voutsinas, S., Sørensen, N., Madsen, H.: State of the art in wind turbine aerodynamics and aeroelasticity. Progr. Aerospace Sciences 42, 285–330 (2007)CrossRefGoogle Scholar
  5. 5.
    Ivanell, S.: Numerical computations of wind turbine wakes. Ph.D. thesis, Royal Institute Of Technology (2009)Google Scholar
  6. 6.
    Johansen, J., Sørensen, N.N., Michelsen, J.A., Schreck, S.: Detached-eddy simulation of flow around the NREL Phase VI blade. Wind Energy 5, 185–197 (2002)CrossRefGoogle Scholar
  7. 7.
    Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186, 652–665 (2003)zbMATHCrossRefGoogle Scholar
  8. 8.
    Olsson, M., Fuchs, L.: Large Eddy Simulation of the proximal region of a spatially developing circular jet. Phys. Fluids 8(8), 2125–2137 (1996)CrossRefGoogle Scholar
  9. 9.
    Pape, A.L., Lecanu, J.: 3D Navier-Stokes computations of a stall-regulated wind turbine. Wind Energy 7, 309–324 (2004)CrossRefGoogle Scholar
  10. 10.
    Pedersen, E., Waye, K.P.: Wind turbine noise, annoyance and self-reported environments health and well-being in different living environments. Occup. Environ. Med. 64, 480–486 (2007)CrossRefGoogle Scholar
  11. 11.
    Salewski, M., Duwig, C., Milosavljevic, V., Fuchs, L.: LES of spray dispersion and mixing in a swirl stabilized GT combustor. AIAA paper AIAA-2007-0924 (2007)Google Scholar
  12. 12.
    van den Berg, G.: Effects of the wind profile at night on wind turbine sound. J. Sound and Vibration 277, 955–970 (2004)CrossRefGoogle Scholar
  13. 13.
    Vermeer, L., Sorensen, J., Crespo, A.: Wind turbine wake aerodynamics. Progress in Aerospace Sciences 39, 467–510 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • R. Z. Szasz
    • 1
  • L. Fuchs
    • 2
  1. 1.Dept. Energy Sciences, LTHLund UniversitySweden
  2. 2.Linné Flow CentreRoyal Institute of TechnologyStockholmSweden

Personalised recommendations