Skip to main content

Large Eddy Simulation of Turbulent Jet Flow in Gas Turbine Combustors

  • Conference paper
Turbulence and Interactions

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 110))

Abstract

Implicit Large Eddy Simulation (ILES) in conjunction with high resolution and high order computational modelling was applied to a turbulent mixing jet of a fuel injector in gas turbine combustors. In the ILES calculation, the governing equations for three dimensional, single phase, nonreactive multi-species compressible flow were solved using a finite volume Godunov method. A fifth-order accurate methods was used to achieve high order spatial accuracy and a second order explicit scheme was applied for time integration. Comparison of mean and fluctuating velocity components and mixture fraction with experiment and conventional LES demonstrated that the ILES successfully captured the turbulent flow structures without explicit subgrid scale modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allaire, G., Clerc, S., Kokh, S.: A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181(2), 577–616 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Drikakis, D.: Advances in turbulent flow computations using high-resolution methods. Prog. Aerosp. Sci. 39(6-7), 405–424 (2003)

    Article  Google Scholar 

  3. Drikakis, D., Fureby, C., Grinstein, F., Youngs, D.: Simulation of transition and turbulence decay in the Taylor-Green vortex. J. Turbul. 8(20) (2007)

    Google Scholar 

  4. Fureby, C.: ILES and LES of complex engineering turbulent flows. J. Fluids Eng. 129(12), 1514–1523 (2007)

    Article  Google Scholar 

  5. Grinstein, F.: Recent progress on monotone integrated large eddy simulation of free jets. JSME Int. J. B-Fluids Therm. Eng. 49(4), 890–898 (2007)

    Article  Google Scholar 

  6. Kempf, A.: Aspects of LES quality. In: Proceedings of the Ninth International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames, pp. 80–111 (2008)

    Google Scholar 

  7. Kempf, A., Lindstedt, R.P., Janicka, J.: Large-eddy simulation of a bluff-body stabilized nonpremixed flame. Combust. Flame 144(1-2), 170–189 (2006)

    Article  Google Scholar 

  8. Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177(1), 133–166 (1987)

    Article  MATH  Google Scholar 

  9. Kim, K., Kim, C.: Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows: Part II: Multi-dimensional limiting process. J. Comput. Phys. 208(2), 570–615 (2005)

    Article  MATH  Google Scholar 

  10. Kolmogorov, A.: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13(1), 82–85 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  11. Masri, A.: Bluff body and swirl flames database, http://www.aeromech.usyd.edu.au/thermofluids/main_frame (cited March 3, 2009)

  12. Masri, A., Kelman, J., Dally, B.: The instantaneous spatial structure of the recirculation zone in bluff-body stabilized flames. In: Symp. Int. Combust., vol. 27(1), pp. 1031–1038 (1998)

    Google Scholar 

  13. Thornber, B., Drikakis, D.: Implicit large-eddy simulation of a deep cavity using high-resolution methods. AIAA J. 46(10), 2634–2645 (2008)

    Article  Google Scholar 

  14. Thornber, B., Mosedale, A., Drikakis, D.: On the implicit large eddy simulations of homogeneous decaying turbulence. J. Comput. Phys. 226(2), 1902–1929 (2007)

    Article  MATH  Google Scholar 

  15. Thornber, B., Mosedale, A., Drikakis, D., Youngs, D., Williams, R.: An improved reconstruction method for compressible flows with low Mach number features. J. Comput. Phys. 227(10), 4873–4894 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shimada, Y., Thornber, B., Drikakis, D. (2010). Large Eddy Simulation of Turbulent Jet Flow in Gas Turbine Combustors. In: Deville, M., Lê, TH., Sagaut, P. (eds) Turbulence and Interactions. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14139-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14139-3_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14138-6

  • Online ISBN: 978-3-642-14139-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics