Large Eddy Simulation of Turbulent Jet Flow in Gas Turbine Combustors

  • Y. Shimada
  • B. Thornber
  • D. Drikakis
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)


Implicit Large Eddy Simulation (ILES) in conjunction with high resolution and high order computational modelling was applied to a turbulent mixing jet of a fuel injector in gas turbine combustors. In the ILES calculation, the governing equations for three dimensional, single phase, nonreactive multi-species compressible flow were solved using a finite volume Godunov method. A fifth-order accurate methods was used to achieve high order spatial accuracy and a second order explicit scheme was applied for time integration. Comparison of mean and fluctuating velocity components and mixture fraction with experiment and conventional LES demonstrated that the ILES successfully captured the turbulent flow structures without explicit subgrid scale modelling.


Turbulent Kinetic Energy Large Eddy Simulation Mixture Fraction Bluff Body Subgrid Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allaire, G., Clerc, S., Kokh, S.: A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181(2), 577–616 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Drikakis, D.: Advances in turbulent flow computations using high-resolution methods. Prog. Aerosp. Sci. 39(6-7), 405–424 (2003)CrossRefGoogle Scholar
  3. 3.
    Drikakis, D., Fureby, C., Grinstein, F., Youngs, D.: Simulation of transition and turbulence decay in the Taylor-Green vortex. J. Turbul. 8(20) (2007)Google Scholar
  4. 4.
    Fureby, C.: ILES and LES of complex engineering turbulent flows. J. Fluids Eng. 129(12), 1514–1523 (2007)CrossRefGoogle Scholar
  5. 5.
    Grinstein, F.: Recent progress on monotone integrated large eddy simulation of free jets. JSME Int. J. B-Fluids Therm. Eng. 49(4), 890–898 (2007)CrossRefGoogle Scholar
  6. 6.
    Kempf, A.: Aspects of LES quality. In: Proceedings of the Ninth International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames, pp. 80–111 (2008)Google Scholar
  7. 7.
    Kempf, A., Lindstedt, R.P., Janicka, J.: Large-eddy simulation of a bluff-body stabilized nonpremixed flame. Combust. Flame 144(1-2), 170–189 (2006)CrossRefGoogle Scholar
  8. 8.
    Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177(1), 133–166 (1987)zbMATHCrossRefGoogle Scholar
  9. 9.
    Kim, K., Kim, C.: Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows: Part II: Multi-dimensional limiting process. J. Comput. Phys. 208(2), 570–615 (2005)zbMATHCrossRefGoogle Scholar
  10. 10.
    Kolmogorov, A.: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13(1), 82–85 (1962)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Masri, A.: Bluff body and swirl flames database, (cited March 3, 2009)
  12. 12.
    Masri, A., Kelman, J., Dally, B.: The instantaneous spatial structure of the recirculation zone in bluff-body stabilized flames. In: Symp. Int. Combust., vol. 27(1), pp. 1031–1038 (1998)Google Scholar
  13. 13.
    Thornber, B., Drikakis, D.: Implicit large-eddy simulation of a deep cavity using high-resolution methods. AIAA J. 46(10), 2634–2645 (2008)CrossRefGoogle Scholar
  14. 14.
    Thornber, B., Mosedale, A., Drikakis, D.: On the implicit large eddy simulations of homogeneous decaying turbulence. J. Comput. Phys. 226(2), 1902–1929 (2007)zbMATHCrossRefGoogle Scholar
  15. 15.
    Thornber, B., Mosedale, A., Drikakis, D., Youngs, D., Williams, R.: An improved reconstruction method for compressible flows with low Mach number features. J. Comput. Phys. 227(10), 4873–4894 (2008)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Y. Shimada
    • 1
  • B. Thornber
    • 1
  • D. Drikakis
    • 1
  1. 1.Department of Aerospace Sciences, School of EngineeringCranfield UniversityCranfieldUK

Personalised recommendations