Skip to main content

LES of Pulsating Turbulent Flows over Smooth and Wavy Boundaries

  • Conference paper
  • 1865 Accesses

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 110))

Abstract

Flows driven by a pressure gradient that oscillates periodically around a non-zero mean (pulsating flows) are found in a variety of geophysical, engineering and biomedical settings. Moreover, aside from their practical importance, they are a useful model to understand the more general problem of how unsteadiness affects the properties of a boundary layer. In this paper, we consider examples of pulsating flows over smooth and wavy surfaces studied with the aid of LES. For the smooth case, the surprising result is that the time averaged statistics are marginally if at all affected by the presence of oscillations (at least in the regime considered of current dominated flows), whereas the oscillating part is influenced by the underlying steady turbulence. Introducing waviness of sufficient amplitude to induce flow separation, at least during part of the cycle, couples the mean to oscillating component much more tightly, resulting in an increased drag felt by the mean flow. Such enhanced drag is due to the ejection of large, coherent spanwise vortices that form in the lee of the ripples, and it has a strong and non trivial dependence on the frequency of the oscillation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balaras, E.: Modeling complex boundaries using an external force field on fixed cartesian grids in large-eddy simulation. Comp. Fluids 33, 375–404 (2004)

    Article  MATH  Google Scholar 

  2. Brereton, G.J., Reynolds, W.C., Jayaraman, R.: Response of a turbulent boundary layer to sinusoidal free-stream unsteadyness. J. Fluid Mech. 221, 131 (1990)

    Article  Google Scholar 

  3. Calhoun, R.J., Street, R.L.: Turbulent flow over a wavy surface: Neutral case. J. Geophys. REs. 106, 9277–9294 (2001)

    Article  Google Scholar 

  4. Chang, Y.S., Scotti, A.: Modeling unsteady turbulent flows over ripples: Reynolds-averaged Navier-Stokes equations (RANS) versus large-eddy simulation (LES). J. Geophys. Res. 109, C09,012 (2004)

    Google Scholar 

  5. Colebrook, C.F., White, C.M.: Experiments with fluid friction in roughened pipes. Proc. R. Soc. London Ser. A 161, 367–381 (1937)

    Article  Google Scholar 

  6. Germano, M., Piomelli, U., Moin, P., Cabot, W.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A3(7), 1760–1765 (1991)

    Google Scholar 

  7. Henn, D., Sykes, R.: Large-eddy simulation of flow over wavy surfaces. J. Fluid Mech. 383, 75–112 (1999)

    Article  MATH  Google Scholar 

  8. Hudson, J.D., Dykhno, L., Hanratty, T.J.: Turbulence production in flow over a wavy wall. Exp. fluids 20, 257–265 (1996)

    Article  Google Scholar 

  9. Jackson, P.S.: On the displacement height in the logarithmic velocity profile. J. Fluid Mech. 111, 15–25 (1981)

    Article  MATH  Google Scholar 

  10. Jimenez, J.: Turbulent flows over rough walls. Ann. Rev. Fluid Mech. 36, 173–196 (2004)

    Article  MathSciNet  Google Scholar 

  11. Longuet-Higgins, M.S.: Oscillating flow over steep sand ripples. J. Fluid Mech. 107, 1–35 (1981)

    Article  MATH  Google Scholar 

  12. Meneveau, C., Lund, T.S., Cabot, W.H.: A lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353–385 (1996)

    Article  MATH  Google Scholar 

  13. Nielsen, P.: Coastal bottom boundary layers and sediment transport, vol. 4, p. 107. World Scientific, River Egde (1992)

    Google Scholar 

  14. Piomelli, U., Balaras, E., Pascarelli, A.: Turbulent structures in accelerating boundary layers. J. Turb. 1, 1–16 (2000)

    Article  Google Scholar 

  15. Raupach, M.R., Antonia, R.A., Rajagopalan, S.: Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44, 1–25 (1991)

    Article  Google Scholar 

  16. Revell, A., Benhamadouche, S., Craft, T., Laurence, D.: A stress-strain lag eddy viscosity model for unsteady mean flow. Int. J. Heat Fluid Flow 27(5), 821–830 (2006)

    Article  Google Scholar 

  17. Robinson, S.K.: Coherent motions in the turbulent boundary layer. Ann. Rev. Fluid Mech. 23, 601–639 (1991)

    Article  Google Scholar 

  18. Scotti, A., Piomelli, U.: Numerical simulation of pulsating turbulent channel flow. Phys. Fluids 13(5), 1367–1384 (2001)

    Article  Google Scholar 

  19. Scotti, A., Piomelli, U.: Turbulence models in pulsating flows. AIAA Journal 40(3), 537–544 (2002)

    Article  Google Scholar 

  20. Tardu, S., Binder, G., Blackwelder, R.F.: Turbulent channel flow with large amplitude velocity oscillations. J. Fluid Mech. 267, 109 (1994)

    Article  Google Scholar 

  21. Tullio, M.D.D., Cristallo, A., Balaras, E., Verzicco, R.: Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J. Fluid Mech. 622, 259–290 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scotti, A., Rubinat, M.G.i., Balaras, E. (2010). LES of Pulsating Turbulent Flows over Smooth and Wavy Boundaries. In: Deville, M., Lê, TH., Sagaut, P. (eds) Turbulence and Interactions. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14139-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14139-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14138-6

  • Online ISBN: 978-3-642-14139-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics