LES of Pulsating Turbulent Flows over Smooth and Wavy Boundaries

  • A. Scotti
  • M. Gasser i Rubinat
  • E. Balaras
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)


Flows driven by a pressure gradient that oscillates periodically around a non-zero mean (pulsating flows) are found in a variety of geophysical, engineering and biomedical settings. Moreover, aside from their practical importance, they are a useful model to understand the more general problem of how unsteadiness affects the properties of a boundary layer. In this paper, we consider examples of pulsating flows over smooth and wavy surfaces studied with the aid of LES. For the smooth case, the surprising result is that the time averaged statistics are marginally if at all affected by the presence of oscillations (at least in the regime considered of current dominated flows), whereas the oscillating part is influenced by the underlying steady turbulence. Introducing waviness of sufficient amplitude to induce flow separation, at least during part of the cycle, couples the mean to oscillating component much more tightly, resulting in an increased drag felt by the mean flow. Such enhanced drag is due to the ejection of large, coherent spanwise vortices that form in the lee of the ripples, and it has a strong and non trivial dependence on the frequency of the oscillation.


Shear Layer Reynolds Stress Turbulent Boundary Layer Bulk Velocity Streamwise Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balaras, E.: Modeling complex boundaries using an external force field on fixed cartesian grids in large-eddy simulation. Comp. Fluids 33, 375–404 (2004)zbMATHCrossRefGoogle Scholar
  2. 2.
    Brereton, G.J., Reynolds, W.C., Jayaraman, R.: Response of a turbulent boundary layer to sinusoidal free-stream unsteadyness. J. Fluid Mech. 221, 131 (1990)CrossRefGoogle Scholar
  3. 3.
    Calhoun, R.J., Street, R.L.: Turbulent flow over a wavy surface: Neutral case. J. Geophys. REs. 106, 9277–9294 (2001)CrossRefGoogle Scholar
  4. 4.
    Chang, Y.S., Scotti, A.: Modeling unsteady turbulent flows over ripples: Reynolds-averaged Navier-Stokes equations (RANS) versus large-eddy simulation (LES). J. Geophys. Res. 109, C09,012 (2004)Google Scholar
  5. 5.
    Colebrook, C.F., White, C.M.: Experiments with fluid friction in roughened pipes. Proc. R. Soc. London Ser. A 161, 367–381 (1937)CrossRefGoogle Scholar
  6. 6.
    Germano, M., Piomelli, U., Moin, P., Cabot, W.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A3(7), 1760–1765 (1991)Google Scholar
  7. 7.
    Henn, D., Sykes, R.: Large-eddy simulation of flow over wavy surfaces. J. Fluid Mech. 383, 75–112 (1999)zbMATHCrossRefGoogle Scholar
  8. 8.
    Hudson, J.D., Dykhno, L., Hanratty, T.J.: Turbulence production in flow over a wavy wall. Exp. fluids 20, 257–265 (1996)CrossRefGoogle Scholar
  9. 9.
    Jackson, P.S.: On the displacement height in the logarithmic velocity profile. J. Fluid Mech. 111, 15–25 (1981)zbMATHCrossRefGoogle Scholar
  10. 10.
    Jimenez, J.: Turbulent flows over rough walls. Ann. Rev. Fluid Mech. 36, 173–196 (2004)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Longuet-Higgins, M.S.: Oscillating flow over steep sand ripples. J. Fluid Mech. 107, 1–35 (1981)zbMATHCrossRefGoogle Scholar
  12. 12.
    Meneveau, C., Lund, T.S., Cabot, W.H.: A lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353–385 (1996)zbMATHCrossRefGoogle Scholar
  13. 13.
    Nielsen, P.: Coastal bottom boundary layers and sediment transport, vol. 4, p. 107. World Scientific, River Egde (1992)Google Scholar
  14. 14.
    Piomelli, U., Balaras, E., Pascarelli, A.: Turbulent structures in accelerating boundary layers. J. Turb. 1, 1–16 (2000)CrossRefGoogle Scholar
  15. 15.
    Raupach, M.R., Antonia, R.A., Rajagopalan, S.: Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44, 1–25 (1991)CrossRefGoogle Scholar
  16. 16.
    Revell, A., Benhamadouche, S., Craft, T., Laurence, D.: A stress-strain lag eddy viscosity model for unsteady mean flow. Int. J. Heat Fluid Flow 27(5), 821–830 (2006)CrossRefGoogle Scholar
  17. 17.
    Robinson, S.K.: Coherent motions in the turbulent boundary layer. Ann. Rev. Fluid Mech. 23, 601–639 (1991)CrossRefGoogle Scholar
  18. 18.
    Scotti, A., Piomelli, U.: Numerical simulation of pulsating turbulent channel flow. Phys. Fluids 13(5), 1367–1384 (2001)CrossRefGoogle Scholar
  19. 19.
    Scotti, A., Piomelli, U.: Turbulence models in pulsating flows. AIAA Journal 40(3), 537–544 (2002)CrossRefGoogle Scholar
  20. 20.
    Tardu, S., Binder, G., Blackwelder, R.F.: Turbulent channel flow with large amplitude velocity oscillations. J. Fluid Mech. 267, 109 (1994)CrossRefGoogle Scholar
  21. 21.
    Tullio, M.D.D., Cristallo, A., Balaras, E., Verzicco, R.: Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J. Fluid Mech. 622, 259–290 (2009)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • A. Scotti
    • 1
  • M. Gasser i Rubinat
    • 1
  • E. Balaras
    • 2
  1. 1.Dept. of Marine SciencesUNCChapel Hill
  2. 2.Fischell Dept. of BioengineeringUMDCollege Park

Personalised recommendations